|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Prerequisites: J M ENGR 2410 and J M ENGR 3700. Basic geology as it relates to index and classification properties of soil. Exploration, sampling, and testing techniques. Soil compaction and stabilization. Capillary, shrinkage, swelling, and frost action in soils. Effective stress, permeability, seepage, and flow nets. Consolidation and consolidation settlements. Stresses in soil. Time rate of consolidation. Mohr's circle, stress path, and failure theories. Shearing strength of sand and clays.
-
1.00 Credits
Prerequisite: J C ENGR 4190 (may be taken concurrently). Soil exploration; in-situ testing, laboratory testing of soil; processing of test data using a microcomputer; statistical analysis of test data; use of test results in the decision-making process.
-
3.00 Credits
Prerequisites: Senior status. Analysis and design of prestressed concrete members. Direct design of composite and noncomposite members for flexure. Design of continuous beams. Flexural strength, shear strength, and design of anchorage zone.
-
3.00 Credits
The students will examine cost engineering principles. Fundamentals will be reviewed and applied to problems of cost estimating , cost control, business planning and management science, profitability analysis, project management, and planning and scheduling. The course will conclude with the 3 ? hour Interim Cost Consultant certification exam administered by the Association for the Advancement of Cost Engineers International. The Interim Level Certification Program allows recent graduates who have at least 4 years experience, in cost management to actively pursue the cost engineering principles certificate. The four years of experience may consist of appropriate college-level academic training (engineering, construction management, architecture, finance, quantity surveying, or other AACE training.
-
3.00 Credits
Prerequisites: Senior standing. An introduction to the use and integration of professional services for Project Design and Delivery Systems in construction projects will be presented. The relationship between owner and the professional service personnel, architects, engineers, contractors and construction managers will be explored in detail. The role, techniques, procedures, management principles, and professional responsibilities will be presented and discussed. Real projects will be presented to illustrate the various project delivery systems used in design and construction. These points will be illustrated through a semester long team project.
-
3.00 Credits
Prerequisites: J C ENGR 3410. This course will cover analysis of framed structures, planar and 3-D, using beam--column elements and shear walls and floors. Flexibility and stiffness analyses are performed by generating the matrices and carrying through the analyses step by step with a matrix manipulator program. A commercially available program is used to check at least one problem.
-
3.00 Credits
This course is an introduction to analysis and design of structures using finite elements. The topics covered include: elementary theory of elasticity, plate theories and buckling of plate structures, finite element formulation of 2-D elasticity and plate problems. Hands on use of commercial finite element software is emphasized throughout. A major design project is included.
-
3.00 Credits
Prerequisites: Junior standing. A practical, hands-on approach to spatial database design and spatial data analysis with Geographical Information Systems (GIS) as applied to planning and engineering. Course objectives are to examine how digital earth resources data are collected, stored, analyzed, and displayed. The emphasis will be on transportation problems, although additional applications will be discussed.
-
3.00 Credits
Prerequisites: Senior standing. This course will cover the following topics: classification of instability phenomena; imperfection sensitivity; illustration with mechanical models; systems with finite degrees of freedom,; postbuckling analysis using perturbation techniques; stability and nonlinear behavior of struts, plates, and cylindrical shells; nonconservation problems; and numerical methods.
-
3.00 Credits
Prerequisites: J C ENGR 2160 and senior standing. Study of basic highway design and traffic circulation principles. Study of design elements of alignment, profile, cross-section, intersection types, interchange types, and controlled-access highways. Investigation of functional highway classification. Traffic volume, delay and accident studies. Analysis of highway capacity of uninterrupted flow, interrupted flow. Freeway, ramp, and weaving sections.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|