Course Criteria

Add courses to your favorites to save, share, and find your best transfer school.
  • 3.00 Credits

    This course introduces students to biostatistics, covering the basic methods utilized to statistically analyze and present data using R programming language. Students will apply statistical analysis on datasets derived from biomedical engineering studies. Topics include random variables and probability distributions, estimation and confidence intervals, hypothesis testing and statistical inference, one-way ANOVA, two-way ANOVA, one-way repeated-measures ANOVA, and non-parametric tests. Prerequisite:    BME 320 requires prerequisites of BME 110 and BIO 110.
  • 2.00 Credits

    This course is the continuation of BME 315. Students will perform a series of laboratory experiments. A project will be conducted at the end of the semester. Prerequisite:    BME 325 requires prerequisites of BME 110, BME 315, and BIO 265.
  • 3.00 Credits

    This course provides an introduction to the interactions between cells and the surfaces of biomaterials. Topics include: materials commonly used in biomedical applications, chemical structure of biomaterials, physical and mechanical properties of biomaterials, the biocompatibility of those materials with the biological environment, and the immune response to biomaterials. Prerequisite:    BME 335 requires prerequisites of BIO 265 and CHE 104.
  • 4.00 Credits

    This course provides the fundamental biomedical applications of fluid mechanics, heat, and mass transfer. Topics include: the principles and applications of biotransport fundamentals, fluid mechanics, macroscopic biotransport, 1-D steady and unsteady state transport, and general multidimensional microscopic transport. Prerequisite:    BME 345 requires prerequisites of BIO 265, BME 310, and MAT 315.
  • 3.00 Credits

    This course is to study the fundamentals of instrumentation in biomedical fields. Topics include: various types of medical instruments; basic analog and digital electronics; data acquisition signal processing; and applications of instrumentation in diagnoses, medical imaging, and laboratory. Regulation and medical safety will be discussed. Prerequisite:    BME 355 requires prerequisites of BIO 265, PHY 180, and MAT 315.
  • 3.00 Credits

    In this course, students acquire the basic tools used to analyze the human body as a mechanical system with examples from the tissue level to the whole-body level. Relevant concepts introduced in previous mechanics courses (e.g., BME 230) will be advanced and applied in BME-specific contexts. Topics include the following: joint kinematics and kinetics; linked segment modeling; tissue stresses and strains; and biomechanics related to injury/disease as well as treatments. Emphasis will be placed on how to effectively find, read, interpret, and synthesize the information presented in scholarly research articles to write a literature review and propose a research study. Prerequisite:    BME 365 requires prerequisites of BIO 265 and BME 230.
  • 3.00 Credits

    This is a capstone design course. This course provides students the opportunity to work with real-world, open-ended, and/or interdisciplinary challenges proposed by faculty or industrial project sponsors. Students work as a small team supervised by a faculty member and/or industry advisor. Students team learn and apply principles of engineering, biology, chemistry, physics, and mathematics to solve biomedical engineering problems through the consideration of engineering solutions in global, economic, environmental, and societal contexts. The design process involves: defining functional requirements, conceptualization, design, development, construction, physical prototyping, measurement, analysis, and conclusion. An initial proposal and progress report are required at the beginning of the course as well as in the middle of these two semesters, respectively. A final report and post/oral presentations are required at the end of the second semester. Prerequisite:    BME 410 requires prerequisites of BME 325, BME 345, BME 355, BME 365 or permission of the instructor.
  • 3.00 Credits

    This is the continuation of BME 410. This course provides students the opportunity to work on real-world, open-ended, and possibly interdisciplinary challenges proposed by faculty or industrial project sponsors. Students work as a small team supervised by a faculty member and/or industry advisor. Student teams learn and apply principles of engineering, biology, chemistry, physics, and mathematics to solve biomedical engineering problems through the consideration of engineering solutions in global, economic, environmental, and societal contexts. The design process involves: defining functional requirements, conceptualization, design, development, construction, physical prototyping, measurement, analysis, and conclusion. An initial proposal and progress reports are required at the beginning of BME 410 and in the middle of the two semesters, respectively. A final report and poster and oral presentations are required at the end of BME 420. Prerequisite:    BME 420 requires a prerequisite of BME 410 or permission of the instructor.
  • 3.00 Credits

    This course provides students knowledge of the processes in the manufacture or quality control of biotechnology products with current Good Manufacturing Practices (cGMP) guidelines and regulations. Topics include: introduction to the FDA and other regulatory agencies, current Good Manufacturing Practices (cGMP), process validation requirements and product life cycle quality management, and the application of the regulations to case studies. Prerequisite:    BME 450 requires a prerequisite of BME 325 or permission of the instructor.
  • 3.00 Credits

    This course covers the fundamental principles and applications of bioprocessing. Engineering principles applied to processes involving recombinant protein production are introduced. Emphasis is placed on the engineering aspects of quantitative bioprocess analysis. Topics include bioprocessing, recombinant DNA technology, material balances, mass transfer, bioreactions, and bioreactor engineering. Prerequisite:    BME 455 requires a prerequisite of BME 345.
To find college, community college and university courses by keyword, enter some or all of the following, then select the Search button.
(Type the name of a College, University, Exam, or Corporation)
(For example: Accounting, Psychology)
(For example: ACCT 101, where Course Prefix is ACCT, and Course Number is 101)
(For example: Introduction To Accounting)
(For example: Sine waves, Hemingway, or Impressionism)
Distance:
of
(For example: Find all institutions within 5 miles of the selected Zip Code)
Privacy Statement   |   Terms of Use   |   Institutional Membership Information   |   About AcademyOne   
Copyright 2006 - 2024 AcademyOne, Inc.