|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
A review of statistical tests frequently used in the biological sciences. Emphasis is placed on understanding experimental design and what statistics can and cannot do. Uses of computer statistical packages are also considered.
-
1.00 Credits
A supervisory experience in teaching of the biology department's laboratories under the guidance of a faculty member. Student experiences may include; preparing materials for the lab, and demonstrating procedures and techniques to students. Note: Students may earn Biology elective credit for only one of BIOL 440/1 or 458. Permission of department required.
-
3.00 Credits
Study of the mechanisms of the immune response including cellular basis of immunity and molecular basis of antigen-antibody reactions. Regulation of antibody production and cell-mediated reactivity examined. Current clinical applicability considered in discussion of tumor, transplantation, allergy-related, and autoimmune immunobiology. Several laboratory exercises included involving serological/immunological determinations detecting antigen-antibody interactions. Three lectures.
-
2.00 Credits
State-of-the-art biochemical and molecular techniques are taught within this hands-on, laboratory-based course. Potential topics include the polymerase chain reaction (PCR), oligonucleotide synthesis, DNA/protein sequencing and analysis (BLAST, DNASIS), pulse-field gel electrophoresis, gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR) spectroscopy, high performance liquid chronatography (HPLC), immunochemistry, and/or other contemporary techniques.
-
3.00 Credits
Course focuses on recent developments in the rapidly expanding field of developmental biology. With the advent of the tools available to molecular biologists, the course will study recent advances in the genetic understanding of various aspects of embryological development and regeneration. The course will present a variety of topics including: fertilization, gastrulation, maternal effect genes, pattern formation, and evolutionary aspects of development. Junior standing in major required.
-
3.00 Credits
The objectives of the course include: identification of different types of membranes based upon composition, morphology and cellular functions, and examination of experiments which have provided understanding of how membranes function in cells and organisms. Topics include membrane composition, electron microscope techniques, membrane transport, membrane proteins and enzymes, receptors, hormone interaction, cell recognition, secretion, and biogenesis of membranes.
-
3.00 Credits
In-depth examination of the ways in which eukaryotic cells regulate their protein composition at the levels of genome replication, transcription, post-transcriptional modifications, and translations. Topics include chromatin structure, transcription factors, and DNA sequence elements, several cell-type specific transcriptional events and how they are regulated, as well as how transcriptional regulation gone awry can cause cancer.
-
3.00 Credits
Course will examine the basic physiological, cellular and molecular pathways which regulate metabolism, growth, and neurological activities of organisms, especially mammals. Discussions will follow text information and general models will be supported with primary research literature to show developments from recent experiments.
-
3.00 Credits
Course focuses on the molecular basis of microbial pathogenesis. Through the application of molecular techniques to the study of the microbe-host interaction, scientists are gaining a fundamental understanding of the virulence mechanisms of microbial pathogens. Using primary literature the course will illustrate how the integration of the molecular basis of virulence mechanisms with the clinical aspects of disease has enhanced understanding of the pathogenesis of infectious diseases.
-
3.00 Credits
The course will provide a background for the field of animal communication including a discussion of definitions of animal communication. It will then survey the production, transmission and reception of auditory, visual, and chemical signals. Optimality theory and signal detection theory will be introduced as they apply to animal communication. It will spend some time on how signals come to be and why they have the design they do (signal evolution). Finally, it will investigate signaling in a variety of situations such as between potential mates, other conspecifics, as well as environmental and autocommunication signaling.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|