Course Criteria

Add courses to your favorites to save, share, and find your best transfer school.
  • 4.00 Credits

    Introduces many aspects of neuroengineering research, with an emphasis on biologically plausible models of neurons, circuits, and systems
  • 4.00 Credits

    This course introduces students to the theory and practice of control systems engineering. Topics include frequency domain modeling, time domain stability, transient and steady-state error analysis, root locus and frequency response techniques and feedback system design. Emphasis is placed on analyzing physiological control systems, but the concepts and design techniques are applicable and applied to a wide variety of other systems including mechanical and electrical systems. Graduate students will have more homework problems and additional exam problems.
  • 4.00 Credits

    This course examines the array of instrumentation and techniques used in the acquisition, processing, and presentation of biomedical signals. Topics include transducers, sensors, Fourier analysis, the ECG signal, flow measurement, medical imaging, and biosensors. Laboratory sessions cover amplifiers, bridge circuits, and the measurement of physical parameters (temperature, pressure, strain) and electrophysiological signals.
  • 4.00 Credits

    This course provides a background in biomaterials: basic material properties, specifics on ceramics, polymers and metals used in the body, and special topics related to biomaterials including tissue engineering, biological responses to implanted materials, and drug delivery.
  • 4.00 Credits

    The course presents the physical basis for the use of high-frequency sound in medicine. Topics include acoustic properties of tissue, sound propagation (both linear and nonlinear) in tissues, interaction of ultrasound with gas bodies (acoustic cavitation and contrast agents), thermal and non-thermal biological effects of utrasound, ultrasonography, dosimetry, hyperthermia and lithotripsy. This course is the graduate complement to BME251.
  • 4.00 Credits

    Human Anatomy is the detailed study of the human organism at the cellular, tissue and organ systems levels. The relationship between structure and function is covered with emphasis on structural relationships. The course includes both lectures and laboratory sessions, an provides a basis for further professional and clinical experience. (Students should not take both BME (or BIO) 258 and BIO 203.) 4 credits
  • 4.00 Credits

    This course teaches the principles of modern cell and tissue engineering with a focus on understanding and manipulating the interactions between cells and their environment. After a brief overview of Cell and Tissue Engineering, the course covers 5 areas of the field. These are: 1) Physiology for Tissue Engineering; 2) Bioreactors and Biomolecule Production; 3) Materials for Tissue Engineering; 4) Cell Cultures and Bioreactors and 5) Drug Delivery and Drug Discovery. Within each of these topics the emphasis is on analytical skills and instructors will assume knowledge of chemistry, mass transfer, fluid mechanics, thermodynamics and physiology consistent with the Cell and Tissue Engineering Track in BME. In a term project, students must present written and oral reports on a developing or existing application of Cell and Tissue Engineering. The reports must address the technology behind the application, the clinical need and any ethical implications. 4 Credits
  • 4.00 Credits

    Course will cover circuits and sensors used to measure physiological systems at an advanced level. Both signal conditioning and sensor characteristics will be addressed. Topics will include measurement of strain, pressure, flow, temperature, biopotentials, and physical circuit construction. The co-requisite laboratory will focus on the practical implementation of electronic devices for biomedical measurements.
  • 4.00 Credits

    Senior capstone design course in the Biomedical Engineering Program. Students work in teams to design, build, and test a medical device or instrument for a faculty, community or industrial sponsor. Accompanying lectures and discussions introduce issues related to ethics, economics, project management, regulation, safety, and reliability. Students will work in teams to design, build and test a prototype medical device, and document their activities through a variety of reports and presentations. 4 credits
  • 0.00 Credits

    No course description available.
To find college, community college and university courses by keyword, enter some or all of the following, then select the Search button.
(Type the name of a College, University, Exam, or Corporation)
(For example: Accounting, Psychology)
(For example: ACCT 101, where Course Prefix is ACCT, and Course Number is 101)
(For example: Introduction To Accounting)
(For example: Sine waves, Hemingway, or Impressionism)
Distance:
of
(For example: Find all institutions within 5 miles of the selected Zip Code)
Privacy Statement   |   Terms of Use   |   Institutional Membership Information   |   About AcademyOne   
Copyright 2006 - 2024 AcademyOne, Inc.