|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
1.00 Credits
Weekly seminar on current research topics in turbulent and other complex flows: theoretical modeling, numerical analysis, computational techniques, and experimental investigations. Recommended for graduate students in fluid mechanics. Approved for S/U grading only.
-
4.00 Credits
Vector and tensor algebra, introduction to complex-variable methods; ordinary differential equations, qualitative questions of existence and uniqueness; analytic solution methods, numerical methods, power-series solution and special functions; eigenvalue problems, Green's functions, Laplace transforms, stability of solutions; engineering applications drawn from mechanics. Prerequisite: MATH 241 or MATH 380; MATH 285.
-
4.00 Credits
Continuation of TAM 541. Modeling, inequalities, elements of functional analysis; partial differential equations, existence and uniqueness, second-order equations; hyperbolic conservation laws; numerical methods, eigenfunction expansions, integral transforms, and fundamental solutions; engineering applications drawn from mechanics. Prerequisite: TAM 541.
-
4.00 Credits
Unified treatment of modern continuum mechanics: mathematical preliminaries; review of kinematics and general balance laws; general theory of mechanical constitutive equations, including material constraints and material symmetry. Prerequisite: TAM 551.
-
4.00 Credits
Advanced methods of perturbation theory and asymptotic analysis, with examples drawn from classical dynamics, fluid mechanics, and wave propagation: asymptotics of integrals, singular perturbation theory (boundary layers, matched asymptotic expansions, and composite expansions), multiple scales, summation of series; special topics. Same as MATH 559, NPRE 559, and PHYS 522. Prerequisite: MATH 446 and TAM 541.
-
4.00 Credits
Mechanics of elastic deformable bodies, based on the fundamental concepts of modern continuum mechanics: kinematics, balance laws, constitutive equations; classical small-deformation theory; formulation of initial boundary-value problems of linear elastodynamics and boundary-value problems of linear elastostatics; variational formulations, minimum principles; applications of theory to engineering problems. Prerequisite: MATH 241 or MATH 380; MATH 285; TAM 251.
-
4.00 Credits
Continuation of TAM 551. Selected topics in linear elasticity (including St. Venant beam theory and plane problems of elastostatics), plasticity (including yield surfaces, von Mises and Tresca yield criteria, Drucker's stability postulate, J-flow theory, perfect plasticity, limit analysis, and slip-line theory), and fracture mechanics (including linear elastic analysis, fracture criteria for elastic brittle fracture, and elastic-plastic fracture). Prerequisite: TAM 551.
-
4.00 Credits
Phenomenological and mathematical formulation of the constitutive laws of plasticity; yield criteria and their experimental verification; plastic stress-strain relations and their associated flow rules; correspondence between rate-independent and rate-dependent plasticity; solutions to basic boundary-value problems, including plane problems and those involving cylindrical and spherical symmetries; variational and minimum principles; limit analysis; plane-strain problems and crystal plasticity; finite-strain theory. Prerequisite: TAM 552.
-
4.00 Credits
Unified analytical treatment of modern fracture problems: macroscopic theories used to determine the static strength of bodies containing cracks; Griffith criterion, linear-elastic fracture mechanics, elastic-plastic fracture mechanics models; small-scale yielding results and their implications; general yielding; interfacial fracture; fracture control; micromechanisms of fracture. Prerequisite: TAM 424 or MSE 440; TAM 541; TAM 552.
-
4.00 Credits
Highly accurate and reliable techniques for large-scale numerical simulations of fluid flows: spectral numerical methods, including Fourier and other functional expansions, Galerkin and collocation projections, domain decompositions and the solution of partial differential equations, especially the Navier-Stokes equations; high-resolution methods for the solution of hyperbolic conservation laws with discontinuous solutions, and issues related to implementation on supercomputers. Same as CSE 560. Prerequisite: TAM 470 and TAM 542.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|