|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
4.00 Credits
Linear waves in one-dimensional homogeneous and inhomogeneous media (both solids and fluids), linear elastic waves in a homogeneous halfspace, scalar waves in a layer and in a layered halfspace, nonlinear diffusive waves, nonlinear dispersive waves, and the inverse scattering transform. Prerequisite: TAM 541 or MATH 556; one of TAM 514, TAM 531, TAM 551.
-
4.00 Credits
Advanced analysis of modern engineering materials with emphasis on relating microstructural phenomena to the mechanics of material behavior: prediction of elastic and thermal properties of materials with heterogeneous microstructure (such as composites), micromechanics of failure and damage, toughening mechanisms, mechanics of phase transformations; current topics in materials research (such as high-temperature response and ferroelasticity). Prerequisite: CEE 300/TAM324 or ME 330; TAM 551.
-
4.00 Credits
Same as AE 525. See AE 525.
-
4.00 Credits
Same as AE 526. See AE 526.
-
4.00 Credits
Same as AE 529. See AE 529.
-
4.00 Credits
Dynamics of fluids in the limit of zero viscosity: governing equations of motion, kinematics, and vorticity transport; general theory of irrotational flow, including two-dimensional potential flow, the complex potential, and three-dimensional potential flow; applications to thin airfoil theory and free streamline theory; inviscid flows with vorticity; vortex dynamics; water wave theory; aspects of inviscid compressible flow. Prerequisite: MATH 241 or MATH 380; MATH 285; TAM 435.
-
4.00 Credits
Dynamics of flow in which viscosity is significant or dominant, and the development and use of theoretical and numerical tools for practitioners of modern fluid mechanics; physics of viscous layers that arise in both high- and low-Reynolds-number flows; dimensional analysis, exact solutions to the Navier-Stokes equations; jets and wakes; microhydrodynamics; fluid stability; an introduction to turbulence. Prerequisite: MATH 241 or MATH 380; MATH 285; TAM 435.
-
4.00 Credits
Stability of fluid motion: linearized flow equations and normal-mode analysis, Kelvin-Helmholtz instability, inviscid and viscous theory of parallel shear flow, Squire's and Rayleigh's inflection-point theorems, secondary instability theory; critical layers; boundary-layer stability; Orr-Sommerfeld equations, Tollmien-Schlichting waves; non-parallel theory, centrifugal instabilities, and Benard convection; nonlinear theory and transition to turbulence; bifurcations, Landau's theory; routes to chaos, strange attractors; transition modeling, prediction, and control; boundary-layer receptivity, experimental evidence. Prerequisite: TAM 532.
-
4.00 Credits
Methods and techniques for measurement and analysis of data used in experimental fluid mechanics: signal processing, electronics, and electro-optics; fluid mechanical properties; experimental signal processing; random data and signal analysis; analog and digital data processing; dynamic similarity, self-preservation; pressure measurement, thermal anemometry, and laser-Doppler velocimetry; flow visualization, particle-image velocimetry. Lecture/lab format. Prerequisite: TAM 531 or TAM 532.
-
4.00 Credits
Instability and origins of chaotic motion in fluid flow; Reynolds averaging and statistical description of turbulence, correlations and spectral dynamics of homogeneous turbulence, anisotropic flows, coherent structures, inhomogeneous turbulence, transport models, and large-eddy simulations. Prerequisite: TAM 532.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|