|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
4.00 Credits
Develops an understanding of microphysical processes occurring within clouds through use of in-situ observations, modeling, and theoretical studies; topics covered include nucleation, diffusional growth of water and ice particles, the warm rain process, the cold rain process (including riming, aggregation, graupel and hail), weather modification, and an introduction to radar meteorology. Prerequisite: ATMS 301.
-
3.00 Credits
Same as ESE 311. See ESE 311.
-
4.00 Credits
Rigorous examination of the dynamical nature of various manifestations of the atmospheric circulation. Topics include the intrinsic effects of earth's rotation and stratification, vorticity and potential vorticity dynamics, various forms of boundary layer, wave dynamics (gravity waves and Rossby waves), geostrophic adjustment, cyclogenesis, frontogenesis and a potpourri of instability theories. Same as PHYS 330. Prerequisite: ATMS 301, ATMS 302.
-
4.00 Credits
Examines the tools and techniques of weather forecasting, with heavy emphasis on actual forecasting. Numerical models used to forecast weather are reviewed and compared. Forecasting using numerical, statistical and probabilistic forecasting techniques is studied. Forecasts of significant winter weather, convection, floods and other weather hazards are emphasized. Students learn the process behind Severe Weather Watches and Warnings, Quantitative Precipitation Forecasts, precipitation type forecasts, flood forecasts and forecasts of other significant weather. Prerequisite: ATMS 302, ATMS 303 or consent of instructor.
-
4.00 Credits
Examination of the structure and dynamics of weather systems that occur on the mesoscale. The course first reviews what is meant by "mesoscale". Examines the structure and dynamics of both free and forced mesoscale circulations. Free circulations are those internal to the atmosphere, such as thunderstorms, mesoscale convective systems, squall lines, hurricanes, jet streaks, and fronts. Forced circulations are those tied to features external to the atmosphere, such as shorelines (the sea breeze), lakes (lake effect storms), and mountains. Prerequisite: ATMS 301, ATMS 302, ATMS 303, or consent of instructor.
-
3.00 Credits
Examines the interconnectedness of weather, climate and society. Focus is on the complex relationship between weather and climate and society from both a physical and social perspective with an examination of the role of sustainability in both impacts and future mitigation. Discussions focused on the physical principles driving the weather and climate and how they interact with all aspects of society. Same as ENSU 301.
-
3.00 Credits
Special topics in atmospheric sciences at the undergraduate level. See Class Schedule for topics and prerequisites. May be repeated in the same or separate terms to a maximum of 12 hours if topics vary.
-
4.00 Credits
Course will qualitatively and quantitatively describe atmospheric boundary layer characteristics and processes. The course will focus on the turbulent structure of the boundary layer and the factors that influence this structure over a variety of surfaces (e.g., soil, vegetation, marine) and under a variety of atmospheric conditions (e.g., stability, diurnal/nocturnal). This atmospheric layer is important to our daily lives because it is where humans live and it connects the small-scale fluxes of energy and mass to the large-scale atmospheric circulation. Prerequisite: ATMS 301, ATMS 302, and ATMS 304; or consent of instructor.
-
4.00 Credits
Covers the mesoscale, synoptic scale and planetary scale motions in the tropical circulation. Emphasis will be on delineating the unique characteristics of tropical dynamics. Topics include Hadley circulation, Walter circulation, Julian-Madden oscillation, monsoons, easterly waves, equatorial waves, hurricanes, the quasi-biennial oscillation, El Nino and the Southern Oscillation. Prerequisite: ATMS 301 and ATMS 302, or consent of instructor.
-
4.00 Credits
Basic principles of radar and references to other ground based remote sensing systems, with emphasis on radar. Discusses principles of conventional and Doppler radar, data processing, and use of Doppler radar in meteorology. Emphasizes radar observations of meteorological phenomena, such as severe thunderstorms and wind shear. Students analyze data from national radar facilities. Prerequisite: ATMS 201 or consent of instructor.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|