|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Review semiconductor circuit elements in detail to model devices for circuit analysis. Devices include diodes, bipolar junction transistors, MOSFETs and operational amplifiers. Discussion of large signal and small signal (ac) models, frequency effects and non-ideal models. Design circuits such as switching circuits, power suppliers, amplifiers, oscillators, non-linear circuits. Students will gain experience in terms of designing, simulating and implementing electronic circuits and systems. Three lecture hours per week.
-
3.00 Credits
Numerical methods required for circuit analysis and design using digital computers are investigated. These techniques include matrix analysis of linear systems; network graphic theory, tolerance analysis, transient analysis, numerical integration, nonlinear circuit analysis, network optimization, and device modeling. Practical examples are given requiring the construction of computer subroutines and use of general analysis programs such as ECAP and CIRAN. Three lecture hours.
-
3.00 Credits
Topics relevant to the design and analysis of VLSI circuits are investigated. These include an introduction to CMOS circuits, their characterization and performance estimation. Logic design and testing of VLSI circuits. Analysis of layout and the design of subsystems. VHDL and commercial CAD packages for VLSI design.
-
3.00 Credits
This course discusses advanced topics in electronics with an emphasis on vehicle applications. It will include ignition systems and controls, amplifiers, frequency characteristics of electronic circuits, feedback in electronic systems and stability, power electronics and motor drive controls (DC/DC and DC/AC converters) and EMC issues. Selected examples include applications such as voltage regulators and battery chargers. Three lecture hours per week.
-
3.00 Credits
Review of representative electronic devices and illustrative applications. Properties of electronic materials. Semiconductors. PN junctions, bi-polar and field-effect transistors. Integrated circuit processing, bonding and packaging. Failure mechanisms and interconnect lifetime prediction. Case studies and applications.
-
3.00 Credits
This is an advanced course on power electronics and electric drives. Example topics include DC, induction, synchronous and reluctance drives; industrial and residential application of power electronics; practical aspects of design of power electronics devices including heat sink and magnetic components designs. Three lecture hours per week.
-
3.00 Credits
Impact of modern materials on commercial product performance; representative illustrations from product areas such as automotive vehicles, commercial aircraft, recreational equipment, and electronic products.
-
3.00 Credits
This course covers the EMC requirements and EMC test methods for large systems. Examples involving various types of applications (automotive, communications, computers) will be discussed. Discussion of design practices used in large installation, including component segregation, cable routing, connectors, grounding, shielding, common impedance coupling, ground planes, screening and suppression. Classification of electromagnetic environments will also be discussed. Three lecture hours per week.
-
3.00 Credits
This course will provide an introduction to computer and human interface and AI, user-interface design from design principles and cognitive perspectives. The course covers such topics innovative multimedia interfaces, design ethics, psychological principles, cognitive models, interaction principles, requirements analysis, project management, I/O devices, standards and styles guides, and visual design principles. This is a project-based class. Three lecture hours per week.
-
3.00 Credits
This course will cover the fundamental concepts and techniques used in multimedia data, storage and retrieval including storage and retrieval images, videos, audio and text documents. Selected multimedia applications will be discussed and students will be required to work on a project related to multimedia applications such as advertising and marketing, education and training, entertainment, medicine, surveillance, wearable computing, biometrics, and remote sensing. Three lecture hours per week.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|