|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
4.00 Credits
This course will introduce students to basic terminology and methods of multimedia. Basic concepts of digital audio will be reviewed, including frequency, sampling, and popular compression schemes. Concepts of digital images will be introduced, such as resolution, color theory, and compression formats. Basic concepts of digital video and animation will be introduced. Relevant web technologies will be reviewed. Four lecture hours per week.
-
4.00 Credits
Introduce fundamental theories and basic techniques in machine learning with an emphasis on engineering applications. Topics include learning concepts, search algorithms, neural networks, fuzzy learning, paradigms for problem solving using machine learning. (F, W).
-
4.00 Credits
This class will introduce students to the technology used in mobile/smart devices and mobile communication networks. Various hardware and software aspects will be introduced, with particular emphasis on the constraints intrinsic to such systems. Students will get an overview of various mobile operating systems and how to develop software for mobile devices. Four lecture hours per week.
-
4.00 Credits
This is an introductory course on electric machines and drive systems and their application in EV, HEV, PHEV and FCV powertrains. The objectives are to familiarize the students with the basic concepts of electromechanical energy conversion and electric drive systems. Students are expected to be able to analyze and design electric drive systems for automotive powertrain applications. The topics covered in this course include DC machines, induction machines, permanent magnet synchronous machines, and switched reluctance motors and drives. Case studies in automotive applications such as electric and hybrid drivetrains will be discussed. Four lecture hours per week.
-
4.00 Credits
Advanced concepts and techniques of web technology, focusing on interactive applications; real-world web engineering applications including data persistence, web security, hardware/software issues and asynchronous client/server communication. A term project is required. Four lectures per week.
-
3.00 Credits
This course will introduce students to basic methods of electric power systems. Topics include AC circuits, phasors, complex power and complex impedance, transformers, per unit system, transmissions lines, power flow, economic dispatch, real and reactive power control, symmetric and unsymmetric faults, transient stability, relaying and protection. Three lecture hours per week.
-
4.00 Credits
This is an introductory course on power systems and load analysis with focus on automotive applications. The objectives are to familiarize the students with the basic principles and concepts of vehicular power systems and loads. Students are expected to be able to analyze and design basic vehicular power systems. The topics covered in this course include an overview of power systems, vehicular power system architecture, DC and AC power grid in vehicular systems, power system stability, reliability, reactive power control, load flow analysis, short circuit analysis, and vehicular power system protection. Four lecture hours per week.
-
4.00 Credits
Introduces fundamental concepts and specifications of electromechanical energy conversion: AC and DC machines drive, electric and magnetic storage and transfer, transformer, and performance analysis of AC and DC machines. The topics include principles of energy conversion, permanent magnet synchronous machines, induction machines, and DC machines. The lab projects for the course will focus on modeling, evaluation, and practice of AC and DC machine drives based on computer simulation and DSP based experiments; transient and dynamic analysis; linearization and small signal analysis of machines. Four lecture/laboratory hours per week.
-
4.00 Credits
Topics include introduction to communication systems, base band communications, sampling theorem, amplitude and frequency modulation system design, statistical analysis of error and performance, digital modulation of analogy signals, digital communication and digital modulation schemes, random processes and applications in digital communications, and noise analysis, optimal receiver. Four lecture hours per week.
-
3.00 Credits
Introduction to signal detection, parameter estimation and information extraction theory and its application to communication systems. Subject areas covered within the context of a digital environment are decision theory, detection and estimation of known and random signals in noise, adaptive recursive digital filtering, optimal linear filtering and pattern recognition. Three lecture hours.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|