|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
The study of electrostatics, magnetostatics and electrodynamics using Maxwell's equations. Of interest to engineers and physical scientists, the course focuses on the logical development of Maxwell's equations from experimental laws and on their application to electromagnetic phenomena. Three hours lecture. (W).
-
3.00 Credits
An introduction to wave and ray optics for students in engineering, mathematics, and the physical sciences. Topics of discussion include reflection and refraction at dielectric surfaces, lenses and mirrors, fiber optics, polarization, interference, and Fraunhofer and Fresnel diffraction. Additional material on coherence, Fourier optics and spatial filtering, and holography is presented as dictated by students' needs and interests, and as time permits. Three hours lecture. (AY).
-
3.00 Credits
A study of thermodynamic phenomena using the methods of statistical mechanics. Designed for engineering students and concentrators in mathematics and the physical sciences; extensive application is made to physical, chemical and biological systems and phenomena, including solids, liquids, gases, paramagnets, thermal radiation, DNA, hemoglobin, semiconductors, heat engines, chemical reactions, and phase transitions. Three hours lecture. (F).
-
3.00 Credits
A course based on the methodology of physics with particular emphasis on the applications of theoretical models and experimental methods to biological objects and systems. Topics may include bioelectricity, membranes, polymers, and physical chemistry of macromolecules. Three hours lecture. (OC).
-
3.00 Credits
A calculus-based introduction to several major areas of modern astrophysics for students concentrating in the physical sciences, mathematics, and engineering. Topics to be covered include observable properties of stars and star systems, stellar structure and evolution, binary systems and galactic x-ray sources, galaxies and quasars, and cosmology. Three hours lecture. (AY).
-
3.00 Credits
Concepts of quantum mechanics with applications of the Schrodinger wave equation to the simpler atoms, molecules, and nuclei. Topics of current interest to physicists, chemists, and biologists are discussed. Three hours lecture. (F).
-
3.00 Credits
Topics in modern atomic physics such as optical and radio-frequency spectroscopy and scattering of atoms and electrons are considered. An introduction to nuclear physics, including nuclear interactions and structure, radioactive decay, fission, and fusion. Three hours lecture. (AY).
-
3.00 Credits
Experiments in both classical and modern physics using contemporary techniques. Commercial apparatus is used in several experiments. Advanced students are encouraged to initiate and conduct their own experiments. Instruction in the planning of experiments and the presentation of oral and written reports is included. One hour recitation, six hours laboratory. Course may be repeated for credit. (W).
-
3.00 Credits
A study of the structure and properties of the solid state of matter with emphasis on crystalline solids, crystal structures, lattice dynamics, electrons in metals and semiconductors, and dielectric and magnetic properties of solids. Three hours lecture. (AY).
-
1.00 - 3.00 Credits
A lecture course in a topic of current interest in physics. Topics vary and are announced in the current Schedule of Classes. One to three hours lecture. (OC).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|