|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
1.00 - 3.00 Credits
Independent Study of specified material in an area of Mechanical Engineering under the guidance of a member of the graduate faculty. The student will submit a report on the project and give an oral presentation to a panel of faculty members at the close of the term.
-
3.00 Credits
A graduate-level analytical study of selected topics in mechanical engineering. The subjects of study in each term usually depend on student and instructor interest. Typical areas of study include vibrations of continuous or lumped systems, fluid mechanics, devices, thermodynamics, heat transfer, mechanics of solids, materials, or processing, etc. The course can be organized to meet the subject needs of a group of students with mutual interests.
-
3.00 Credits
Topic: Advanced Topics in Mechanics of Composite Materials. This course will consider several advanced topics in mechanics of composite materials, including composite plate and beam analysis, failure theories under static and dynamic loading, buckling and vibrations. Prerequisites: ME 589, ME 512 or ME 514.
-
3.00 Credits
Review of FE theory in linear static. FEA in dynamics. FEA in heat transfer. FEA in fluid mechanics. FEA in nonlinear problems; material and geometrical nonlinearities, total and updated Lagrangian formulations, solution techniques. Use of FE codes. Graduate standing or special permission. (YR).
-
3.00 Credits
The course presents selected topics of contemporary advanced fluid mechanics, such as the hydrodynamic stability theory, turbulence, multi-phase flows, magnetohydrodynamics, interfacial flows, flows of non-newtonian fluids, micro- and nano-fluid mechanics, biofluid mechanics, etc.
-
3.00 Credits
The course will emphasize the similarities between various types of continuous systems as well as common features of continuous and discrete systems. Variational principle will be introduced as a notion of natural modes of vibration for discrete systems is reviewed. Natural modes of vibration for continuous systems will be discussed using the boundary value formulation, the general formulation of the eigenvalue problem and orthogonality. These concepts will be applied to bars, rods, membranes, and plates. Approximate methods will be introduced to determine the natural modes of vibration for complex continuous systems. A few methods to be considered include the Rayleigh-Ritz, Galerkin, Collocation, Myklestad, and Lumped-parameter methods. All the approximate methods presented will allow expedient numerical solution by means of high-speed computers. The damped and undamped response to deterministic excitations will be considered for various systems. Graduate standing or special permission. (YR).
-
3.00 Credits
Analysis, synthesis, and optimization of linear, multilinear and nonlinear mechanical systems with the electronic analog computer. Graduate standing or special permission. (YR).
-
1.00 - 6.00 Credits
Graduate students electing the course, while working under the general supervision of a member of the department faculty, are expected to plan and carry out the work themselves and submit a thesis for review and approval, and also present an oral defense of the thesis. Students must satisfactorily complete 6 credit hours in ME 699, but these hours may be spread over more than one term. Graduate standing or special permission. (YR).
-
3.00 Credits
A study of music and its development from 1600 to the present through examination of representative forms of musical expression.
-
3.00 Credits
The course provides an introduction to jazz styles within their cultural context. Major figures (Louis Armstrong, Duke Ellington, Charlie Parker, and others) and styles (New Orleans, Big Band, Bebop, Cool Jazz, etc.) will be studied through recordings. Ideas about jazz as the expression of African American culture will be studied. (OC).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Cookies Policy |
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|