|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Introduction to the general characteristics of wave propagation. Physical interpretation of Maxwell's equations. Propagation of plane electromagnetic waves and energy. Transmission lines. Antenna fundamentals. Prerequisites: PHYS 2326, CE/EE 3300 and CE/EE/TE 3301. (3-0) S
-
3.00 Credits
Continuation of the study of electromagnetic wave propagation. Metallic and dielectrically guided waves including microwave waveguides and optical fibers. Dipole antennas and arrays. Radiating and receiving systems, plasmas. Propagation of electromagnetic waves in materials and material properties. This course may be used as an honors course. Prerequisite: EE 4301. (3-0) S
-
3.00 Credits
Introduction to computer organization and design, including the following topics: CPU performance analysis. Instruction set design, illustrated by the MIPS instruction set architecture. Systemslevel view of computer arithmetic. Design of the datapath and control for a simple processor. Pipelining. Hierarchical memory. I/ O systems. I/O performance analysis. Multiprocessing. Students cannot get credit for both CS/SE 3340 and CE/EE 4304. Prerequisite: CE/EE 3320. (Same as CE 4304) (3-0) S
-
3.00 Credits
Introduction to linear control theory. General structure of control systems. Mathematical models including differential equations, transfer functions, and state space. Control system characteristics. Transient response, external disturbance, and steady-state error. Control system analysis. Performance, stability, root-locus method, Bode diagram, and Nyquist plot. Control system design. Compensation design using phase-lead and phase-lag networks. Prerequisites: CE/EE 2300, CE/EE/TE 3302. (3-0) S
-
3.00 Credits
Introduction to CMOS digital IC design using semi-custom and fullcustom design techniques with an emphasis on techniques for rapid prototyping and use of various VLSI design tools. FPGA's, standard cell and full-custom design styles. Introduction to a wide variety of CAD tools. Prerequisite: CE/EE 3320 (or, for CS majors, CS/SE 4340). (3-0) T
-
3.00 Credits
Principles of design and fabrication of integrated circuits. Bipolar and MOS technologies. Passive and active component performance, fabrication techniques including epitaxial growth, photolithography, oxidation, diffusion, ion-implantation, thin and thick film components. Design and layout of integrated devices. Relations between layout and fabrication technique. Prerequisite: CE/EE 3310. (3-0) T
-
3.00 Credits
Computer arithmetic and error analysis. Solution of linear equations, roots of polynomial equations, interpolation and approximation, numerical differentiation and integration, solution of ordinary differential equations. Emphasis on engineering applications and numerical software. Students cannot get credit for both CS/MATH 4334 and CE/EE/TE 4334. Prerequisites: CE/EE 2300, CE/EE/TE 3300, and knowledge of a high level programming language. (Same as CE/TE 4334) (3-0) Y
-
3.00 Credits
Analog integrated circuits and systems. Analysis and design of linear amplifiers, including operational, high-frequency, broad-band and feedback amplifiers. Use of monolithic silicon systems. Prerequisite: CE/EE 3311. (3-0) T
-
3.00 Credits
Digital integrated circuits. Large signal model for bipolar and MOS transistors. MOS inverters and gates. Propagation delay and noise margin. Dynamic logic concepts. Bipolar transistor inverters and gates, regenerative logic circuits, memories. Prerequisites: CE/EE 3311, CE/EE 3320. (3-0) T
-
3.00 Credits
Information, digital transmission, channel capacity, delta modulation, and differential pulse code modulation are discussed. Principles of coding and digital modulation techniques such as Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and Continuous Phase Frequency Shift Keying (CPFSK) are introduced. M-ary signaling such as Quadrature amplitude and phase shift keying, and M-ary PSK and FSK are also discussed. Prerequisite: EE 3350. (3-0) T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|