|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
1.00 - 6.00 Credits
Independent study under a faculty member's direction. May be repeated for credit as topics vary (9 hours maximum). Prerequisite: Student must obtain approval from participating mathematical sciences faculty member and the undergraduate advisor. Can satisfy Communication elective (3 hours) if it has a major writing/report component. ([1-6] -0) S
-
1.00 - 9.00 Credits
Subject matter will vary from semester to semester. May be repeated for credit (9 hours maximum). ([1-9]-0) S
-
1.00 - 3.00 Credits
EE fundamentals laboratory that stresses laboratory procedures; learning use of common laboratory equipment such as power supplies, multimeters, signal generators, and oscilloscopes; understanding the assembly of electronic circuits by putting together and testing two simple printed circuit boards; making measurements; familiarization with simple DC resistor circuits; Ohm's law; analyzing AC signals, including frequency, period, amplitude, and rms value; inductors, capacitors and DC transients; measuring phase shift in an AC circuit due to an inductor or capacitor; and basics of laboratory report writing. (Same as CE/EE 1102) (0-1) S
-
1.00 - 3.00 Credits
Laboratory to accompany EE 3301. Design, assembly and testing of linear electrical networks and systems. Use of computers to control electrical equipment and acquire data. Prerequisite: EE/TE 1102. Corequisite: CE/EE/TE 3301. (Same as CE/EE 3101) (0-1) S
-
1.00 - 3.00 Credits
Laboratory based on MATLAB and LabVIEW to provide implementation experience on topics covered in TE 3302. Laboratory experiments cover linear time-invariant systems, convolution, Fourier series, continuous Fourier transform, sampling, discrete Fourier transform, analog and digital filtering. Each lab is followed by a design application. Corequisite: CE/EE/TE 3302. Pre- or corequisite: ECS 3390. (Same as CE/EE 3102) (0-1) S
-
3.00 Credits
Analysis and design of RC, RL, and RLC electrical networks. Sinusoidal steady state analysis of passive networks using phasor representation; mesh and nodal analyses. Introduction to the concept of impulse response and frequency analysis using the Laplace transform. Prerequisites: MATH 2420 and PHYS 2326. Corequisite: CE/EE/TE 3101. (Same as CE/EE 3301) (3-0) Y
-
3.00 Credits
Introduces the fundamentals of continuous and discrete-time signal processing. Linear system analysis including convolution and impulse response, Fourier series, Fourier transform and applications, discrete-time signal analysis, sampling and z-transform. Prerequisite: CE/EE 3300. Corequisite: CE/EE/TE 3102. (Same as CE/EE 3302) (3-0) Y
-
3.00 Credits
Principles of counting. Boolean operations. Sets, relations, functions, and partial orders. Recurrence relations. Graph theory. Students cannot get credit for both CE/TE 3307 and CS 2305 or CS 3305. Prerequisite: MATH 2417. (Same as CE 3307) (3-0) Y
-
3.00 Credits
Axioms of probability, conditional probability, Bayes theorem, random variables, probability density/mass function (pdf/pmf), cumulative distribution function, expected value, functions of random variables, joint, conditional and marginal pdfs/pmfs for multiple random variables, moments, central limit theorem, elementary statistics, empirical distribution. Students cannot get credit for both CS/SE 3341 and CE/EE/TE 3341. Prerequisite: MATH 2419. Recommended corequisite: MATH 2420. (Same as CE/EE/MECH 3341) (3-0) Y
-
3.00 Credits
Basic data structures such as arrays, stacks, queues, lists, trees. Algorithmic complexity. Sorting and search techniques. Fundamental graph algorithms. Students cannot get credit for both CS/SE 3345 and CE/TE 3346. Prerequisites: CE/CS 2336 and CE/TE 3307. Pre- or corequisite: CE/EE/TE 3341. (Same as CE 3346) (3-0) S
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|