|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Design of wireless radiofrequency transceivers. Analog and digital modulation, digital modulation schemes, system level design for receiver and transmitter path, wireless communication standards and determining system parameters for standard compliance, fundamentals of synthesizer design, and circuit level design of low-noise amplifiers and mixers. Prerequisites: Electrical and Computer Engineering 54L and Electrical and Computer Engineering 163L or equivalent. Instructor: Staff
-
3.00 Credits
Fault modeling, fault simulation, test generation algorithms, testability measures, design for testability, scan design, built-in self-test, system-on-a-chip testing, memory testing. Prerequisite: Electrical and Computer Engineering 52L or equivalent. Instructor: Chakrabarty
-
3.00 Credits
The classical theory of Maxwell's equations; electrostatics, magnetostatics, boundary value problems including numerical solutions, currents and their interactions, and force and energy relations. Three class sessions. Prerequisite: Electrical and Computer Engineering 53L. Instructor: Carin, Joines, Liu, or Smith
-
3.00 Credits
Review of fundamental laws of Maxwell, Gauss, Ampere, and Faraday. Elements of waveguide propagation and antenna radiation. Analysis of antenna arrays by images. Determination of gain, loss, and noise temperature parameters for terrestrial and satellite electromagnetic communication systems. Prerequisite: Electrical and Computer Engineering 53L or 271. Instructor: Joines
-
3.00 Credits
Mathematical methods, physical ideas, and device concepts of optoelectronics. Maxwell's equations, and definitions of energy density and power flow. Transmission and reflection of plane waves at interfaces. Optical resonators, waveguides, fibers, and detectors are also presented. Prerequisite: Electrical and Computer Engineering 53L or equivalent. Instructor: Joines
-
3.00 Credits
Microwave circuit analysis and design techniques. Properties of planar transmission lines for integrated circuits. Matrix and computer-aided methods for analysis and design of circuit components. Analysis and design of input, output, and interstage networks for microwave transistor amplifiers and oscillators. Topics on stability, noise, and signal distortion. Prerequisite: Electrical and Computer Engineering 53L or equivalent. Instructor: Joines
-
3.00 Credits
Systematic discussion of useful numerical methods in computational electromagnetics including integral equation techniques and differential equation techniques, both in the frequency and time domains. Hands-on experience with numerical techniques, including the method of moments, finite element and finite-difference time-domain methods, and modern high order and spectral domain methods. Prerequisite: Electrical and Computer Engineering 271 or consent of instructor. Instructor: Carin or Liu
-
3.00 Credits
Systematic discussion of practical inverse problems in electromagnetics and acoustics. Hands-on experience with numerical solution of inverse problems, both linear and nonlinear in nature. Comprehensive study includes: discrete linear and nonlinear inverse methods, origin and solution of nonuniqueness, tomography, wave-equation based linear inverse methods, and nonlinear inverse scattering methods. Assignments are project oriented using MATLAB. Prerequisites: Graduate level acoustics or electromagnetics (Electrical and Computer Engineering 271), or consent of instructor. Instructor: Liu
-
3.00 Credits
Analysis of wave phenomena that occur in materials based on fundamental formulations for electromagnetic and elastic waves. Examples from these and other classes of waves are used to demonstrate general wave phenomena such as dispersion, anisotropy, and causality; phase, group, and energy propagation velocities and directions; propagation and excitation of surface waves; propagation in inhomogeneous media; and nonlinearity and instability. Applications that exploit these wave phenomena in general sensing applications are explored. Prerequisites: Electrical and Computer Engineering 53L. Instructor: Cummer
-
1.00 Credits
Students learn core ECE concepts, providing a foundation on which subsequent courses build. These concepts include techniques for analyzing linear circuits, semiconductor and photonic devices, frequency representation, filtering, and combinational and sequential logic. Central to the course is an extensive design challenge that requires students to integrate knowledge across topics while honing practical design and project management skills. The course culminates in an exciting competition in which teams of robots race to overcome challenging obstacles using sensor data acquisition and processing. Prerequisite: Engineering 53L. Corequisite: MATH 32. Instructor: Huettel or Ybarra
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|