|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Basic concepts and techniques used stochastic modeling of systems with applications to performance and reliability of computer and communications system. Elements of probability, random variables (discrete and continuous), expectation, conditional distributions, stochastic processes, discrete and continuous time Markov chains, introduction to queuing systems and networks. Prerequisite: Mathematics 107. Instructor: Trivedi
-
3.00 Credits
Theory, design, and implementation of mobile wireless networking systems. Fundamentals of wireless networking and key research challenges. Students review pertinent journal papers. Significant, semester-long research project. Networking protocols (Physical and MAC, multi-hop routing, wireless TCP, applications), mobility management, security, and sensor networking. Prerequisites: Electrical and Computer Engineering 156 or Computer Science 114. Instructor: Roy Choudhury
-
3.00 Credits
Methods for performance and reliability analysis of local area networks as well as wide area networks. Probabilistic analysis using Markov models, stochastic Petri nets, queuing networks, and hierarchical models. Statistical analysis of measured data and optimization of network structures. Prerequisites: Electrical and Computer Engineering 156 and 255. Instructor: Trivedi
-
3.00 Credits
Elementary biophysical background for signal propagation in natural neural systems. Artificial neural networks (ANN) and the history of computing; early work of McCulloch and Pitts, of Kleene, of von Neumann and others. The McCulloch and Pitts model. The connectionist model. The random neural network model. ANN as universal computing machines. Associative memory; learning; algorithmic aspects of learning. Complexity limitations. Applications to pattern recognition, image processing and combinatorial optimization. Instructor: Staff
-
3.00 Credits
Parallel computer architecture design and evaluation. Design topics include parallel programming, message passing, shared memory, cache coherence, cache coherence, memory consistency models, symmetric multiprocessors, distributed shared memory, interconnection networks, and synchronization. Evaluation topics include modeling, simulation, and benchmarking. Prerequisite: Computer Science 220 or Electrical and Computer Engineering 252 or consent of instructor. Instructor: Lebeck or Sorin
-
3.00 Credits
Emphasis on full-custom chip design. Extensive use of CAD tools for IC design, simulation, and layout verification. Techniques for designing high-speed, low-power, and easily-testable circuits. Semester design project: Groups of four students design and simulate a simple custom IC using Mentor Graphics CAD tools. Teams and project scope are multidisciplinary; each team includes students with interests in several of the following areas: analog design, digital design, computer science, computer engineering, signal processing, biomedical engineering, electronics, photonics. A formal project proposal, a written project report, and a formal project presentation are also required. The chip design incorporates considerations such as cost, economic viability, environmental impact, ethical issues, manufacturability, and social and political impact. Prerequisites: Electrical and Computer Engineering 52L and Electrical and Computer Engineering 163L. Some background in computer organization is helpful but not required. Instructor: Chakrabarty
-
3.00 Credits
Design and layout of CMOS analog integrated circuits. Qualitative review of the theory of pn junctions, bipolar and MOS devices, and large and small signal models. Emphasis on MOS technology. Continuous time operational amplifiers. Frequency response, stability and compensation. Complex analog subsystems including phase-locked loops, A/D and D/A converters, switched capacitor simulation, layout, extraction, verification, and MATLAB modeling. Projects make extensive use of full custom VLSI CAD software. Prerequisite: Electrical and Computer Engineering 162 or 163L. Instructor: Morizio
-
3.00 Credits
Synthesis and analysis of multivariable linear dynamic feedback compensators. Standard problem formulation. Performance norms. Full state feedback and linear quadratic Gaussian synthesis. Lyapunov and Riccati equations. Passivity, positivity, and self-dual realizations. Nominal performance and robust stability. Applications to vibration control, noise suppression, tracking, and guidance. Prerequisite: a course in linear systems and classical control, or consent of instructor. Instructor: Bushnell, Clark, or Gavin
-
3.00 Credits
The course focuses on various aspects of design automation for mixed-signal circuits. Circuit simulation methods including graph-based circuit representation, automated derivation and solving of nodal equations, and DC analysis, test automation approaches including test equipments, test generation, fault simulation, and built-in-self-test, and automated circuit synthesis including architecture generation, circuit synthesis, tack generation, placement and routing are the major topics. The course will have one major project, 4-6 homework assignments, one midterm, and one final. Prerequisites: ECE 163L. Permission of instructor required. Instructor: Staff
-
3.00 Credits
Algorithms and CAD tools for VLSI synthesis and design verification, logic synthesis, multi-level logic optimization, high-level synthesis, logic simulation, timing analysis, formal verification. Prerequisite: Electrical and Computer Engineering 52L or equivalent. Instructor: Chakrabarty
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|