|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Review of surface hydrology and its interaction with groundwater. The nature of porous media, hydraulic conductivity, and permeability. General hydrodynamic equations of flow in isotropic and anisotropic media. Water quality standards and contaminant transport processes: advective-dispersive equation for solute transport in saturated porous media. Analytical and numerical methods, selected computer applications. Deterministic versus stochastic models. Applications: leachate from sanitary landfills, industrial lagoons and ponds, subsurface wastewater injection, monitoring of groundwater contamination. Conjunctive surface-subsurface models. Prerequisite: Civil Engineering 123L or consent of instructor. Instructor: Medina
-
3.00 Credits
Atmospheric aerosol and its relationship to problems in air control, atmospheric science, environmental engineering, and industrial hygiene. Open to advanced undergraduate and graduate students. Prerequisites: knowledge of calculus and college-level physics. Consent of instructor required. Instructor: Khlystov
-
3.00 Credits
Principles of measurements and analysis of ambient particulate matter (aerosol). Traditional and emerging measurements techniques currently used in air quality monitoring and homeland defense. Open to advanced undergraduate and graduate students interested in the science and engineering related to atmospheric aerosol. Consent of the instructor required. Instructor: Khlystov
-
3.00 Credits
Geochemistry of the water-solid interface of soils, minerals, and particles in earth systems. Topics will vocer a quantitative description of the chemical composition of soils, geochemical specalation, mindral weathering and stability, sorption and ion exchange, soil redox processes, and chemical kinetics at environmental surfaces. Pre-requisite: CE/ENVIRON 242 or CE 120L or permission of instrcutor.
-
3.00 Credits
Characterization of behavior of geomaterials. Stress-strain incremental laws. Nonlinear elasticity, hypo-elasticity, plasticity and visco-plasticity of geomaterials; approximated laws of soil mechanics; fluid-saturated soil behavior; cyclic behavior of soils; liquefaction and cyclic mobility; elements of soil dynamics; thermal effects on soils. Prerequisite: Civil Engineering 139L or equivalent. Instructor: Hueckel
-
3.00 Credits
The course addresses engineered and natural situations, where mechanical and hydraulic properties of soils and rocks depend on environmental (thermal chemical, biological) processes. Experimental findings are reviewed, and modeling of coupled thermo-mechanical, chemo-mechanical technologies are reviewed. Instructor: Hueckel
-
3.00 Credits
Principles of genetics and recombinant DNA for environmental systems. Applications to include genetic engineering for bioremediation, DGGE, FISH, micro-arrays and biosensors. Laboratory exercises to include DNA isolation, amplification, manipulation and analysis. Prerequisites: CE 124L/BIO 25 or consent of the instructor. Instructor: Gunsch
-
3.00 Credits
Equilibrium, kinetic, and analytical approaches applied to quantitative description of processes affecting the distribution and fate of anthropogenic and natural organic compounds in surface and groundwaters, including chemical transfers between air, water, soils/sediments, and biota; and thermochemical and photochemical transformations. The relationships between organic compound structure and environmental behavior will be emphasized. Sampling, detection, identification, and quantification of organic compounds in the environment. Prerequisites: university-level general chemistry and organic chemistry within last four years. Instructor: Stapleton
-
3.00 Credits
Theory and design of fundamental and alternative physical and chemical treatment processes for pollution remediation. Reactor kinetics and hydraulics, gas transfer, adsorption, sedimentation, precipitation, coagulation/flocculation, chemical oxidation, disinfection. Prerequisites: introductory environmental engineering, chemistry, graduate standing, or permission of instructor. Instructor: Staff
-
3.00 Credits
Principles of chemical equilibria and kinetics applied to quantitative chemical description of natural and engineered aquatic systems. Topics include acid/base equilibrium, the carbonate system, metal complexation, oxidation/reduction reactions, precipitation/dissolution of minerals, and surface absorption. Prerequisite: Civil and Environmental Engineering 120L or Environment 160 or equivalent. Instructor: Hsu-Kim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|