Course Criteria

Add courses to your favorites to save, share, and find your best transfer school.
  • 3.00 Credits

    08F, 09F: 9; Laboratory A consideration of the engineering and scientific basis for using cells or their components in engineered systems. Central topics addressed include kinetics and reactor design for enzyme and cellular systems; fundamentals, techniques, and applications of recombinant DNA technology; and bioseparations. Additional lectures will provide an introduction to metabolic modeling as well as special topics. The course is designed to be accessible to students with both engineering and life-science backgrounds. This course has a graduate section, see Engineering Sciences 160. Prerequisite: Mathematics 3, Chemistry 3 or 5, Biology 12 or 13 or permission. Dist: TLA. Gerngross.
  • 3.00 Credits

    08F, 09F: 10A This course will expose students to the fundamental principles of chemical engineering and the application of these principles to a broad range of systems. In the first part of the course, aspects of chemical thermodynamics, reaction kinetics, and transport phenomena will be addressed. These principles will then be applied to a variety of systems including industrial, environmental, and biological examples. Prerequisites: Engineering Sciences 22, 25; Chemistry 5. Dist: TAS. Laser.
  • 3.00 Credits

    08F, 09F: 10 A survey of the sources, measurement techniques, and treatment technologies relating to environmental pollution resulting from the activities of humans. The course will be technology-focused, but will also touch on topics related to the implementation of technology in the real world such as public perception, policy and legislation, and choosing between technological alternatives. Technological and other issues will be addressed relating to water pollution, air pollution, solid wastes, and the fate and transport of pollutants in the environment. Consideration of each area will include general background and key concepts, detailed design examples of importance in the area, and case studies/current topics. The course will include guest lectures. Prerequisite: Mathematics 3 and Chemistry 5, or equivalent, or permission. Dist: TAS. Cushman-Roisin.
  • 3.00 Credits

    08F, 09F: 10A This course will cover some basic concepts underlying the 'information superhighway.' The technologies of high speed networking have stimulated much activity within the federal government, the telecommunications and computer industries, and even social science and popular fiction writing. The technical focus will be on communications technologies, information theory, and the communications requirements of video (standard and ATV), speech (and other audio), text data. Social economic and policy issues will be an integral part of the course . Dist: TAS . Taylor.
  • 3.00 Credits

    09S, 10S: 11 Natural resources sustain human productivity. Principles of scientific resource management are developed, and prospects for sustainability are explored. Three generic categories of resource are analyzed: exhaustible, living, and renewable. In the first category we emphasize the lifecycle of exploitation including exhaustion, exploration and substitution. In the living category we explore population dynamics under natural and harvested regimes, for fisheries and forests. Finally, the renewable case of water is treated in terms of quantity and quality. Throughout, the intersection of natural, economic, and political behavior is explored in theory via computer simulations; case studies illustrate contemporary management problems and practices. Prerequisite: Mathematics 13. Dist: TAS. Lynch.
  • 3.00 Credits

    09S: W 2:00-4:00, F 8:00-10.00; Laboratory: W 4:00-6:00 Offered in alternate years Groundwater contamination is a widespread threat to the environment and to human health. This course will include a survey of physical, chemical, and biological processes by which both dissolved and multi-phase contaminants are transported and transformed in the subsurface. Laboratory is used to illustrate phenomena and principles. Prerequisite: Earth Sciences 66 or permission of instructor. Dist: TAS. Renshaw.
  • 3.00 Credits

    10W: 11 Offered in alternate years Introduction to movement and transformation of substances released into the natural environment. Fundamentals of advection, dispersion, and reaction. Aggregation and parameterization of various mixing processes leading to dispersion at larger spatial and temporal scales. Importance of inhomogeneity, anisotropy, and stratification in natural media. Basic principles are illustrated by application to atmospheric, ground water, river, estuarine, coastal, and oceanic pollution problems. Case studies include urban smog, acid rain, Chernobyl fall-out, and stratospheric ozone depletion. Prerequisite: Mathematics 13; Engineering Sciences 37 or permission. Dist: TAS. Cushman-Roisin.
  • 3.00 Credits

    09W, 10W: 10A An interdisciplinary introduction to the principles of design for sustainability, with emphasis on the built environment. Through lectures, readings, discussions, and a major design project, students will learn to design buildings and other infrastructure with low to no impact on the environment. Emphasis is on creative thinking, strategies for managing the complexity of the product life-cycle of the infrastructure, and the thorough integration of human and economic aspects in the design. Homework and project activities provide practice in relevant engineering analyses. Enrollment is limited to 20 students Prerequisites: Engineering Sciences 21 and 22 or Studio Art 65. Dist: TAS. Cushman-Roisin, Robbie.
  • 3.00 Credits

    09S, 10S: 2A Technologies that will impact healthcare in the 21st century are explored, including biology, robotics, and information. Biotechnologies are explored that will be used for the treatment of diseases and the regeneration of missing organs and limbs. Robotics will be explored that will replace parts. This will include artificial organs, robots as replacement for human parts, the human genome project, gene therapy, biomaterials, genetic engineering, cloning, transplantation (auto, allo and xeno), limb regeneration, man-machine interfaces, robotics, prosthetic limbs, artificial organs and joints. This section will also cover ethical issues related to the above topics and issues regarding the FDA and the approval of new medical treatments. We will discuss going beyond normal with respect to the senses, muscles and creating wings. No Prerequisite. Dist: TAS. Rosen, Robbie.
  • 3.00 Credits

    09S: 10A This course introduces systems dynamics, an approach to policy design and analysis based upon feedback principles and computer simulation. The approach is useful for gaining an understanding of the underlying structural causes of problem behavior in social, economic, political, environmental, technological, and biological systems. Goals of this approach are to gain better understanding of such problem behaviors and to design policies aimed at improving them. Lectures and exercises illustrate applications of the approach to real, current problems such as urban decay, resource depletion, environmental pollution, product marketing and distribution, and agricultural planning in an expanding population. The similarity and transferability of underlying feedback characteristics among various applications is emphasized. No prior engineering or computer science experience is necessary. Prerequisite: Mathematics 3. Dist: TAS. The staff.
To find college, community college and university courses by keyword, enter some or all of the following, then select the Search button.
(Type the name of a College, University, Exam, or Corporation)
(For example: Accounting, Psychology)
(For example: ACCT 101, where Course Prefix is ACCT, and Course Number is 101)
(For example: Introduction To Accounting)
(For example: Sine waves, Hemingway, or Impressionism)
Distance:
of
(For example: Find all institutions within 5 miles of the selected Zip Code)
Privacy Statement   |   Terms of Use   |   Institutional Membership Information   |   About AcademyOne   
Copyright 2006 - 2025 AcademyOne, Inc.