Course Criteria

Add courses to your favorites to save, share, and find your best transfer school.
  • 3.00 Credits

    Not offered in the period from 08F through 10S A study of the interaction of material surfaces in relative motion. The concepts of friction, wear, surface mechanics and lubrication will be covered as will such topics as sliding surface temperature, properties of solid and liquid lubricants and surface topography. Applications considered include fluid film and rolling element bearings; brakes, seals and other machine components; metal forming and metal working; lubrication of human joints. Each student is required to complete an in-depth study of one specific area in tribology. Prerequisite: Engineering Sciences 34 and 76 or permission of the instructor.
  • 3.00 Credits

    09W: 10A Offered in alternate years Development and application of approximate and "exact" analytical and computational methods of analysis to a variety of structural systems, including trusses, two- and three-dimensional frames, plates and/or shells. Modeling of structural systems as one and multi degree of freedom lumped systems permits analysis under a variety of dynamic loads as well as providing an introduction to vibration analysis.Prerequisites: Engineering Sciences 33. Phan.
  • 3.00 Credits

    10W: Arrange Offered in alternate years This course is an introduction to physiological principles and concepts necessary for understanding basic regulatory phenomena and the pathophysiology of disease in living organisms. An analytical approach will be emphasized and terminology essential for understanding and describing these processes will be developed. The course will include some aspects of cellular biology, excitable tissue phenomena, cardiopulmonary and renal physiology, and neuroendocrine regulation of some of these processes. Prerequisite: Permission of the instructor. Diamond.
  • 3.00 Credits

    10S: Arrange An advanced treatment of digital signal processing for the analysis of time series. A study is made of parametric and nonparametric methods for spectral analysis. The course includes a review of probability theory, statistical inference, and the discrete Fourier Transform. Techniques are presented for the digital processing of random signals for the estimation of power spectra and coherency. Examples are taken from linear system theory and remote sensing using radar. Laboratory exercises will be assigned requiring the use of the computer. Prerequisite: Engineering Sciences 110. Hansen.
  • 3.00 Credits

    Not offered in the period from 08F through 10S An advanced treatment of communications system engineering with an emphasis on digital signal transmission. The course includes a review of probability theory, random processes, modulation, and signal detection. Consideration will be given to channel modeling, the design of optimum receivers, and the use of coding. Prerequisite: Engineering Sciences 110.
  • 3.00 Credits

    Not offered in the period from 08F through 10S A study of the fracture and fatigue behavior of a wide range of engineering materials (metals, ceramics, polymers, biological materials and composites). Topics include; work of fracture, fracture mechanics (linear elastic, elastic-plastic and plastic), fracture toughness measurements, crack stability, slow crack growth, environmentally assisted cracking, fatigue phenomenology, the Paris Law and derivatives, crack closure, residual stress effects, random loading effects. These topics will be presented in the context of designing to avoid fracture and fatigue. Prerequisite: Engineering 130 or permission of the instructor.
  • 3.00 Credits

    Not offered in the period from 08F through 10S A study of kinematics, dynamics, and vibrations of mechanical components. Topics will include: Kinematic analysis and synthesis of mechanisms, with applications to linkages, cams, gears, etc.; dynamics of reciprocating and rotating machinery; and mechanical vibrations. Computer aided design and analysis of kinematic and kinetic models. Prerequisite: Engineering 140.
  • 3.00 Credits

    09S: Arrange Offered in alternate years Biocommodity engineering is concerned with the biological production of large-scale, low unit value commodity products including fuels, chemicals, and organic materials. Intended primarily for advanced graduate students and drawing extensively from the literature, this course considers the emergence of biocommodity engineering as a coherent field of research and practice. Specific topics include feedstock and resource issues, the unit operations of biocommodity engineering - pretreatment, biological processing, catalytic processing, and separations-and the design of processes for biocommodity products.Prerequisite: Engineering Sciences 157 and Engineering Sciences 161 and permission. Lynd, Laser.
  • 3.00 Credits

    09S: Arrange This course is designed to mingle the talents of engineering and life science graduate students in order to bring both analytical and biological expertise to bear upon significant problems in mathematical modeling of physiological systems. Techniques appropriate for steady state and dynamic systems analysis are reviewed with reference to specific physiological systems. Applied problems include the analysis of the respiratory control system, modeling the dynamics of cardiac muscle, and optimal control aspects of cardiorespiratory function. Students working in small groups will spend about half the term working on the development of an original mathematical simulation of a physiological system or on adaptation of an existing model to simulate a new aspect of physiological control. Prerequisites: Engineering Sciences 26 and Engineering 166 (or equivalent life sciences background), or permission of the instructor. Daubenspeck.
  • 3.00 Credits

    09W, 10W: 12; Laboratory This course is intended to take the mystery out of the technology that we have grown to depend on in our everyday lives. Both the principles behind and examples of devices utilizing electricity, solid and fluid properties, chemical effects, mechanical attributes and other topics will be discussed. In the associated lab project, students will dissect, analyze, (and possibly revive!) a broken gadget or appliance of their choosing. This course has no prerequisite, but enrollment is limited to 50 students. Dist: TLA. Gibson.
To find college, community college and university courses by keyword, enter some or all of the following, then select the Search button.
(Type the name of a College, University, Exam, or Corporation)
(For example: Accounting, Psychology)
(For example: ACCT 101, where Course Prefix is ACCT, and Course Number is 101)
(For example: Introduction To Accounting)
(For example: Sine waves, Hemingway, or Impressionism)
Distance:
of
(For example: Find all institutions within 5 miles of the selected Zip Code)
Privacy Statement   |   Terms of Use   |   Institutional Membership Information   |   About AcademyOne   
Copyright 2006 - 2025 AcademyOne, Inc.