|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
3 hours. Theory of vector-valued functions on Euclidean space. Derivative as best linear-transformation approximation to a function. Divergence, gradient, curl. Vector fields, path integrals, surface integrals. Constrained extrema and Lagrange multipliers. Implicit function theorem. Jacobian matrices. Green's, Stokes', and Gauss' (divergence) theorems in Euclidean space. Differential forms and an introduction to differential geometry. Prerequisite(s): MATH 2700 and 2730.
-
3.00 Credits
3 hours. Physical metallurgy principles with a focus on understanding structure-property relationships in metals and alloys. Topics include structure, dislocations, mechanical behavior, grain boundaries, annealing, recrystallization, grain growth, diffusion, phase diagrams, transformations, strengthening mechanisms, fatigue, creep and fracture. Emphasis on the basic structure-property-processing relationships in metals and how they differ from other material classes. Prerequisite(s): MTSE 3010, 3030 and 3040.
-
3.00 Credits
3 hours. The science and engineering of materials having medical applications. Provides students with an understanding of the challenges that materials (metals, polymers and ceramics) face/create during short- and long-term contact with mammalian physiology. Develops the student's understanding of the relationships controlling acceptance or failure of a given material in the body. Exposes students to strategies used in current and future biomaterials. Prerequisite(s): MTSE 3010 and 3050.
-
3.00 Credits
3 hours. Emphasis on structure-property relationships: chemical bonding, crystal structures, crystal chemistry, electrical properties, thermal behavior, defect chemistry. Processing topics: powder preparation, sol-gel synthesis, densification, toughening mechanisms. Materials topics: glasses, dielectrics, superconductors, aerogels. Prerequisite(s): MTSE 3010, 3020, 3040.
-
3.00 Credits
3 hours. Introduction to the basic principles used to simulate, model and visualize the structure and properties of materials. Topics include the various methods used at different length and time scales ranging from the atomistic to the macroscopic. Prerequisite(s): MTSE 3010 and 3030; MATH 3310.
-
3.00 Credits
3 hours. Chemical structures, polymerization, molar masses, chain conformations. Rubber elasticity, polymer solutions, glassy state and aging. Mechanical properties, fracture mechanics and viscoelasticity. Dielectric properties. Polymer liquid crystals. Semi-crystalline polymers, polymer melts, rheology and processing. Thermal analysis, microscopy, diffractometry and spectroscopy of polymers. Computer simulations of polymer-based materials. Prerequisite(s): MFET 3450.
-
3.00 Credits
3 hours. Integration of structure, properties, processing and performance principles to formulate and implement solutions to materials engineering problems. Prerequisite(s): MTSE 3030, 3040 and 3050.
-
3.00 Credits
3 hours. Intensive study of electronic, optical and magnetic properties of materials with an emphasis on the fundamental physics and chemistry associated with these material systems. Prerequisite(s): MFET 3450 and MATH 3310.
-
2.00 Credits
2 hours. Provides students with experience in research and development. Students pick a faculty mentor for this class and attend bi-weekly meetings with the other students to discuss progress, strategies, outcomes, etc. Designed primarily for the students to do a literature survey on the selected topic and a research plan to be initiated either late in the semester or in the follow-on course in the subsequent semester. Prerequisite(s): MTSE 3010, 3020, 3030, 3040, 3050, 3070 and 3080.
-
2.00 Credits
2 hours. Follow-on course from MTSE 4090, Senior Research Project I. Students continue to work with the same faculty mentor for this class and will continue to attend bi-weekly meetings with the other students to discuss progress, strategies, outcomes, etc. Designed primarily for the students to perform the proposed research plan established in MTSE 4090. Prerequisite(s): MTSE 4090.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|