Course Criteria

Add courses to your favorites to save, share, and find your best transfer school.
  • 3.00 Credits

    Full course for one semester. Theories of light, from the 17th century to the present. Electromagnetic theory and the modern photon picture. Applications of geometrical optics, including lenses, prisms, polarizers, wave plates; reflection and refraction. Huygens' Principle, Fermat's Principle, diffraction and holography, introduction to quantum optics. Prerequisite: Physics 200. Lecture-laboratory. Not offered 2009-10.
  • 3.00 Credits

    Full course for one semester. A study of advanced electronics and computer-assisted data acquisition and analysis intended to provide the student with a basis for understanding and designing laboratory systems used in contemporary experimental physics. Topics include operational amplifiers, filters, oscillators, logic circuits, and computer interfacing and analysis using a LabVIEW system. Prerequisite: Physics 200. Lecture-laboratory.
  • 3.00 Credits

    Full course for one semester. Guided and independent experimental investigations of physical phenomena using research-style measurement techniques. Prerequisite: Physics 331. Lecture-laboratory.
  • 3.00 Credits

    Full course for one semester. An introduction to quantum theory, beginning with the Schr dinger equation and the statistical interpretation of the wave function. One-dimensional applications, including the infinite square-well, the harmonic oscillator, and scattering; in three dimensions, the theory of angular momentum, central potentials, and the hydrogen atom; time-independent perturbation theory, spin, identical particles, and the Pauli exclusion principle. In general, this course concentrates on exact solutions to artificial problems, in contrast to Quantum Mechanics II, which develops approximate solutions to real problems. Prerequisite: Physics 200. Lecture.
  • 3.00 Credits

    Full course for one semester. Examines the essentials of probability and statistics, the kinetic theory of gases, statistical mechanics, temperature, equations of state, heat, internal energy, entropy, reversibility, and distribution functions. Prerequisite: Physics 200. Lecture.
  • 3.00 Credits

    Full course for one semester. Crystalline lattice structures, vibrational modes, and electronic band theory are explored and used to explain the observed electrical, thermal, optical, and magnetic properties of solids. Prerequisite: Physics 200. Lecture.
  • 3.00 Credits

    Full course for one semester. The course will cover the physics of measurement techniques for studying the most significant intermolecular interactions of synaptic transmission. An introduction to the biology of neurons will be provided. Measurement techniques such as evanescent wave microscopy, confocal microscopy, X-ray diffraction, fluorescence resonance energy transfer, and Raman and infrared spectroscopy will be explained in terms of the physics of the experiment and its implementation. A clear idea of how these measurements inform the models of cellular processes such as exocytosis as well as the atomic-level models of neuromolecular structure and function will be presented. The course will include demonstrations of selected measurement techniques such as total internal reflection microscopy, infrared absorption, and crystallography. Prerequisites: Physics 100, Physics 200, Mathematics 211 and 212. Lecture. Not offered 2009-10.
  • 3.00 Credits

    Full course for one semester. Specific topics vary from year to year, drawn principally from the following areas: internal constitution, evolution, and death of stars; structure of galaxies; interstellar medium; radiative processes; and cosmology. Prerequisite: Physics 200. Lecture. Not offered 2009-10.
  • 3.00 Credits

    Full course for one semester. Introduction to the theory and phenomenology of elementary particle physics. The course includes a semihistorical overview, followed by relativistic kinematics, the Dirac equation, evaluation of simple Feynman diagrams, and a survey of the strong, electromagnetic, and weak interactions from the perspective of gauge theory. Prerequisite: Physics 200. Lecture-conference.
  • 3.00 Credits

    Full course for one semester. This course covers numerical and laboratory methods for students of science. The primary focus will be on topics in physics, chemistry, and biology. The course begins with the history of scientific computation, moves on to methodology and specific algorithms, and closes with individual elective projects to be approved by the instructor. Basic programming will not be taught; the course will concentrate on scientific, not programmatic, aspects, so students must be able to write programs largely on their own. Specific topics include differential equations, matrix methods, signal and image processing, quantum-theoretic models, astrophysical models, and nonlinear and chaotic systems. Prerequisites: a sophomore-level course in one of the sciences and experience with a sufficiently strong computer language, such as Pascal or C. Lecture-conference-laboratory. Cross-listed as Biology 367.
To find college, community college and university courses by keyword, enter some or all of the following, then select the Search button.
(Type the name of a College, University, Exam, or Corporation)
(For example: Accounting, Psychology)
(For example: ACCT 101, where Course Prefix is ACCT, and Course Number is 101)
(For example: Introduction To Accounting)
(For example: Sine waves, Hemingway, or Impressionism)
Distance:
of
(For example: Find all institutions within 5 miles of the selected Zip Code)
Privacy Statement   |   Terms of Use   |   Institutional Membership Information   |   About AcademyOne   
Copyright 2006 - 2024 AcademyOne, Inc.