Course Criteria

Add courses to your favorites to save, share, and find your best transfer school.
  • 3.00 Credits

    One-half course for one semester. An introduction to the cellular, endocrine, and evolutionary aspects of reproduction in animals. Lectures will emphasize the cell biology, anatomy, and physiology of vertebrate reproductive systems and present a comparative approach to understanding sex determination. Conferences will highlight contemporary literature on topics such as in vitro fertilization, birth control, hormone imposters, and animal cloning. Prerequisites: Biology 101/102. Lecture-conference. Not offered 2009-10.
  • 3.00 Credits

    One-half course for one semester. This course will explore the metabolic, muscular, cardiovascular, and sensorimotor aspects of human physiology. Particular attention will be directed to the requirements for and responses to vigorous physical exercise. Prerequisite: Biology 101/102. Consent of the instructor is required for students who have completed more advanced work in biology. Lecture-conference. Not offered 2009-10.
  • 3.00 Credits

    Full course for one semester. An analysis of cell biology, biochemistry, metabolism, ecophysiology, and development of plants. Lecture topics include water relations, respiration, photosynthesis, nitrogen fixation, mineral nutrition, plant hormones, plant molecular biology, genetic engineering, the role of environmental signals in plant development, and the environmental physiology of Pacific Northwest forests. Lectures will be supplemented with readings in research journals. Laboratory exercises are designed to demonstrate basic research techniques as well as the principles covered in lectures. Students are required to conduct an advanced, independent project. Prerequisites: Biology 101/102 and Chemistry 101/102. Chemistry 201/202 is recommended. Lecture-laboratory.
  • 3.00 Credits

    Full course for one semester. A survey of vascular plants using evolutionary and ecological principles to interpret patterns of diversity in vascular plant form and function. Topics include plant species, methods of phylogenetic reconstruction, paleobotany, plant reproductive biology, and plant ecological interactions. Laboratory work will include a survey of flowering plant families with an emphasis on learning elements of the flora of the Pacific Northwest. Laboratory projects will demonstrate methods used for establishing evolutionary relationships, assessing genetic structure in natural populations, and identifying adaptive features of plant form and function, and will include independent research in the laboratory or field. Prerequisite: Biology 101/102. Lecture-laboratory.
  • 3.00 Credits

    Full course for one semester. An integrated approach to the study of behavior-the phenotype through which an organism interacts with, and also modifies, its environment. We will study how behavioral phenotypes are shaped by the social and physical environment and analyze how they are implemented through development by neural physiology, gene networks, and individual genes. Conversely, we will study how behaviors modify the environment and thus impact the physiology and genetics of organisms as well as the evolution of species. Examples will be drawn from both laboratory and field studies using comparative molecular and behavioral approaches to identify patterns and recurring themes, which will be discussed in the context of existing theories about animal behavior. The laboratory will cover both bench skills and field techniques that will then be applied in independent student projects. Prerequisite: Biology 101/102. Lecture-laboratory. Not offered 2009-10.
  • 3.00 Credits

    Full course for one semester. An analysis of mechanisms of early development of invertebrates and vertebrates. Emphasis is on the cellular, molecular, and genetic study of the determination of the body plan, with readings from the primary literature. The morphogenesis of selected organ systems is also presented. The laboratory emphasizes experimental work. An independent laboratory project is required. Prerequisites: Biology 101/102 and Chemistry 101/102. A course in genetics or cell biology is strongly recommended. Lecture-laboratory. Not offered 2009-10.
  • 3.00 Credits

    Full course for one semester. The molecular biology of eukaryotes, particularly as it relates to the control of gene expression. Genome organization, packaging and perpetuation, and mechanisms of gene regulation will be treated in depth, with the focus on experimental approaches and what they reveal about the conversion of genotype to phenotype. The laboratory will emphasize molecular approaches to analysis of complex genomes and gene expression. Prerequisites: Biology 101/102 and Chemistry 101/102. Chemistry 201/202 is recommended. Lecture-laboratory.
  • 3.00 Credits

    Full course for one semester. The biology of microorganisms, including structure and function of the prokaryotic cell, metabolism, genetics interactions with host organisms, and cell-to-cell communication. Course will emphasize current areas of active research using the primary literature to illustrate key concepts discussed in lecture. Laboratory exercises emphasize interactions of bacteria with their environment and with host organisms, using classical and molecular genetic techniques to address biological problems. An advanced independent research project is required. Prerequisites: Biology 101/102, Chemistry 101/102. Lecture-laboratory.
  • 3.00 Credits

    Full course for one semester. Basic concepts of genetics, with emphasis on molecular genetics. Topics include DNA structure and replication; RNA structure; transcription; translation; genetic code; mutations and mutagenesis; recombinant DNA technology; genomics; genetics of cancer; principles of gene segregation; genetic analysis of prokaryotes and eukaryotes, including humans; and gene regulation in prokaryotes and eukaryotes. In the laboratory, students spend most of the semester on an original molecular genetics research project. Prerequisites: Biology 101/102 and Chemistry 101/102. Lecture-laboratory.
  • 3.00 Credits

    Full course for one semester. The basic concepts of population ecology and population genetics are explored to provide an in-depth understanding of evolutionary biology and conservation biology. Topics include population growth and regulation, demography, interspecific interactions, population genetics, quantitative genetics, evolution of phenotypic plasticity, evolution of life histories, and basic molecular evolution. Examples are chosen primarily from the vertebrate literature. Laboratories emphasize the ecology of amphibian development, experimental design, and computer simulation. These skills are then put to use in both field and laboratory independent projects. The course is supplemented by field trips and video presentations. Prerequisite: Biology 101/102. One upper-division biology course is highly recommended. Lecture-laboratory.
To find college, community college and university courses by keyword, enter some or all of the following, then select the Search button.
(Type the name of a College, University, Exam, or Corporation)
(For example: Accounting, Psychology)
(For example: ACCT 101, where Course Prefix is ACCT, and Course Number is 101)
(For example: Introduction To Accounting)
(For example: Sine waves, Hemingway, or Impressionism)
Distance:
of
(For example: Find all institutions within 5 miles of the selected Zip Code)
Privacy Statement   |   Terms of Use   |   Institutional Membership Information   |   About AcademyOne   
Copyright 2006 - 2024 AcademyOne, Inc.