|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Frontier issues in understanding the practical aspects of NMR imaging. Theoretical descriptions are accompanied by specific examples of pulse sequences, and basic engineering considerations in MRI system design. Emphasis is placed on implications and trade-offs in MRI pulse sequence design from real-world versus theoretical perspectives. Recommended preparation: EBME 431 or PHYS 431. Offered as EBME 460 and PHYS 460. Prereq: Graduate standing or Undergraduate with Junior or Senior standing and a cumulative GPA of 3.2 or above.
-
3.00 Credits
Principles of image processing and analysis with applications to biomedical images from the nano-scale to 3D whole organ imaging. Topics include image filtering, enhancement, restoration, registration, morphological processing, and segmentation. Recommended preparation: EBME 409 or equivalent. Prereq: Graduate standing or Undergraduate with Junior or Senior standing and a cumulative GPA of 3.2 or above.
-
3.00 Credits
Frontier issues in biomedical imaging that address problems at the cellular and molecular levels. Topics include endogenous methods to assess molecular compositions, imaging agents, reporter genes and proteins, and drug delivery, which will be discussed in the context of applications in cancer, cardiology, central nervous system, ophthalmology, musculoskeletal diseases, pulmonary diseases, and metabolic diseases. Emphasis is placed on an interdisciplinary problem-based approach to investigate the application of biomedical imaging to biological and disease areas. Recommended preparation: EBME 410 and EBME 451 or consent of instructor. Prereq: Graduate standing or Undergraduate with Junior or Senior standing and a cumulative GPA of 3.2 or above.
-
3.00 Credits
Biomedical mass transport and chemical reaction processes. Basic mechanisms and mathematical models based on thermodynamics, mass and momentum conservation. Analytical and numerical methods to simulate in vivo processes as well as to develop diagnostic and therapeutic methods. Applications include transport across membranes, transport in blood, tumor processes, bioreactors, cell differentiation, chemotaxis, drug delivery systems, tissue engineering processes. Recommended preparation: EBME 350 and EBME 409 or equivalent. Offered as EBME474 and ECHE 474. Prereq: EBME 409 and graduate standing or EBME 309 and senior standing.
-
3.00 Credits
Computer simulations and mathematical analysis of neurons and neural circuits, and the computational properties of nervous systems. Students are taught a range of models for neurons and neural circuits, and are asked to implement and explore the computational and dynamic properties of these models. The course introduces students to dynamical systems theory for the analysis of neurons and neural learning, models of brain systems, and their relationship to artificial and neural networks. Term project required. Students enrolled in MATH 478 will make arrangements with the instructor to attend additional lectures and complete additional assignments addressing mathematical topics related to the course. Recommended preparation: MATH 223 and MATH 224 or BIOL 300 and BIOL 306. Offered as BIOL 378, COGS 378, MATH 378, BIOL 478, EBME 478, EECS 478, MATH 478 and NEUR 478.
-
0.00 Credits
This course will provide the Ph.D. candidate with experience in teaching undergraduate or graduate students. The experience is expected to consist of direct student contact, but will be based upon the specific departmental needs and teaching obligations. This teaching experience will be conducted under the supervision of the faculty member who is responsible for the course, but the academic advisor will the assess the educational plan to ensure that it provides an educational opportunity for the students. Recommended preparation: EBME 400T, BME Ph.D. student.
-
3.00 Credits
Fundamentals of neural stimulation and sensing, neurophysiology and pathophysiology of common neurological disorders, general implantation and clinical deployment issues. Specialist discussions in many application areas such as motor prostheses for spinal cord injury and stroke, cochlear implants, bladder control, stimulation for pain management, deep brain stimulation, and brain computer interfacing. Prereq: Graduate standing.
-
3.00 Credits
Engineering design principles of optical instrumentation for medical diagnostics. Elastic and inelastic light scattering theory and biomedical applications. Confocal and multiphoton microscopy. Light propagation and optical tomographic imaging in biological tissues. Design of minimally invasive spectroscopic diagnostics. Recommended preparation: EBME 403 or PHYS 326 or consent. Prereq: Graduate standing.
-
3.00 Credits
Linear and nonlinear parameter estimation of static and dynamic models. Identifiability and parameter sensitivity analysis. Statistical and optimization methods. Design of optimal experiments. Applications include control of breathing, iron kinetics, ligand-receptor models, drug delivery, tumor ablation, tissue responses to heating. Critical analysis of journal articles. Simulation projects related to student research. Recommended preparation: EBME 409. Prereq: Graduate standing.
-
1.00 Credits
Students will be trained in topics including public speaking, grant writing, notebook management, professionalism, etc. Prereq: Graduate standing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|