|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
1.00 Credits
Experiments for measurement, assisting, replacement, or control of various biomedical systems. Students choose a few lab experiences from a large number of offerings relevant to all BME sequences. Experiments are conducted primarily in faculty labs with 3-8 students participating. Recommended preparation: EBME 201, EBME 202, and ENGR 210. Prereq or Coreq: EBME 318.
-
3.00 Credits
General principles, instrumentation, and biomedical applications of medical imaging. Topics include: x-ray, ultrasound, MRI, nuclear imaging, image reconstruction, and image quality. Recommended preparation: EBME 308, ENGR 210, and EBME 202 or equivalent.
-
3.00 Credits
This course will provide an introduction to biomedical imaging and its applications in measurements of physiological function, stem cell biology, and drug delivery. Students will learn about imaging technologies including basic principles of imaging (resolution and contrast), optical microscopy and in vivo imaging, and magnetic resonance imaging. Emerging techniques in cellular and molecular imaging, including targeted imaging agents and reporter gene imaging will be discussed. Biomedical applications will include such topics as tumor characterization in drug assessment, functional brain mapping, targeted drug delivery, functional cardiovascular measurements, and stem cell research will be demonstrated. Prereq: EBME 201, EBME 202, EBME 308, PHYS 121, PHYS 122.
-
3.00 Credits
The goal of this course is to present students with a firm understanding of the primary components, design principles, and engineering concepts central to the field of tissue engineering. First, the biological principles of tissue formation during morphogenesis and wound repair will be examined. The cellular processes underlying these events will be presented with an emphasis on microenvironment regulation of cell behavior. Biomimetic approaches to controlling cell function and tissue formation via the development of biomaterial systems will then be investigated. Case studies of regeneration strategies for specific tissues will be presented in order to examine the different tissue-specific engineering strategies that may be employed. Special current topics in tissue engineering will also be covered. Recommended preparation: EBME 306, BIOL 362, and CHEM 223.
-
3.00 Credits
Quantitative bioelectricity: action potentials and cable equations. Origins of biopotentials, biopotential recording, electrical stimulation of excitable tissue, electrodes/electrochemistry and cardiac electrophysiology. Overview of major biomedical devices. Recommended preparation: EBME 201, EBME 317 and ENGR 210.
-
1.00 Credits
This course will provide research and development in the laboratory of a mentoring faculty member. Varied R&D experiences will include activities in biomedical instrumentation, tissue engineering, imaging, drug delivery, and neural engineering. Each Student must identify a faculty mentor, and together they will create description of the training experience prior to the first class. Prereq: EBME 201 and EBME 202.
-
1.00 Credits
This course will provide research and development training in the laboratory of a mentoring faculty member. Varied R&D experiences will include activities in biomedical instrumentation, tissue engineering, imaging, drug delivery, and neural engineering. Each student must identify a faculty mentor, and together will create a description of the training experience prior to the first class. Recommended preparation EBME 328. Prereq: EBME 201 and EBME 202.
-
3.00 Credits
The objective of this course is to equip the students with a "molecular toolbox"--a set of quantitative skills that permit rational designs for engineering tissues starting at the molecular level. The course will build on the physical and chemical principles in equilibrium, kinetics, and mass transport. Specific examples in bioengineering systems will be used throughout the course to illustrate the importance of understanding and application of these principles to tissue engineering. Recommended preparation: ENGR 225. Offered as EBME 350 and ECHE 355.
-
1.00 Credits
Computer simulation of mathematical models of biomedical systems. Numerical methods with MATLAB applications. Coreq: EBME 309.
-
1.00 Credits
A laboratory which focuses on the basic components of biomedical instrumentation and provides hands-on experience for students in EBME 310, Biomedical Instrumentation. The purpose of the course is to develop design skills and laboratory skills in analysis and circuit development. Coreq: EBME 310.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|