|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
A synthesis of skeletal tissue structure and biology, materials engineering, and strength of materials concepts. This course is centered on deepening the concept of biocompatibility and using it to pose and solve biomaterials problems. We cover: fundamental concepts of materials used for load bearing medical applications, wear, corrosion, and failure of implants. Structure and properties of hard tissues and joints are presented using a size hierarchy motif. Tools and analysis paradigms useful in the characterization of biomaterials are covered in the context of orthopedic and dental applications. Prereq: EBME 306.
-
3.00 Credits
Biomaterials design and application in different tissue and organ systems. The relationship between the physical and chemical structure of biomaterials, functional properties, and biological response. Recommended preparation: EBME 201 and EBME 202.
-
3.00 Credits
Introduction to the basic biomechanics of human movement and applications to the design and evaluation of artificial devices intended to restore or improve movement lost due to injury or disease. Measurement techniques in movement biomechanics, including motion analysis, electromyography, and gait analysis. Design and use of upper and lower limb prostheses. Principles of neuroprostheses with applications to paralyzed upper and lower extremities. Recommended preparation: Consent of instructor and senior standing.
-
4.00 Credits
Quantitative analysis of biomedical signals and physiological systems. Time domain and frequency domain analysis of linear systems. Fourier and Laplace transforms. A/D conversion and sampling. Filter design. Computational laboratory experiences with biomedical applications. Recommended preparation: EBME 201, EBME 202, MATH 224, ENGR 210.
-
3.00 Credits
Mathematical modeling of biomedical systems. Lumped and distributed models of electrical, mechanical, and chemical processes applied to cells, tissues, and organ systems. Numerical methods for solving equations to simulate system models. Recommended preparation: EBME 308. Coreq: EBME 359.
-
3.00 Credits
Physical, chemical and biological principles for biomedical measurements. Modular blocks and system integration. Sensors for displacement, force, pressure, flow, temperature, biopotentials, chemical composition of body fluids and biomaterial characterization. Patient safety. Recommended preparation: EBME 308. Coreq: EBME 360.
-
3.00 Credits
This course is designed to provide students with understanding and expertise of the basic tools in tissue engineering research. Through lectures the students will be introduced to the array of methods and materials available to tissue engineering researchers, learn how to rationally determine suitable choices for their applications, and receive instruction on how to implement those designs. Much of the course will be spent in the BME Tissue Engineering Laboratory getting hands-on experience (1) on the materials end with materials selection, characterization, and scaffold fabrication; (2) on the cell end with cell culture, tissue characterization and bioreactor design. The class will be assessed by a weekly grading of the students' lab notebooks, as well as a final exam based on the content learned throughout the semester.
-
3.00 Credits
The teaching objective is to provide students with a basic understanding of the principles of design and engineering of well-defined molecular structures and architectures intended for applications in controlled release and organ-targeted drug delivery. The course will discuss the therapeutic basic of drug delivery based on drug pharmacodynamics and clinical pharmacokinetics. Biomaterials with specialized structural and interfacial properties will be introduced to achieve drug targeting and controlled release. Offered as EBME 316 and EBME 416. Prereq: EBME 306 and PHRM 309
-
3.00 Credits
Ion channels are the molecular basis of membrane excitability in all cell types, including neural, heart, and muscle cells. This course presents the structure and the mechanism of function of ion channels at the molecular level. It introduces the basic principles and methods in the ion channel study including the ionic basis of membrane excitability, thermodynamic and kinetic analysis of channel function, voltage clamp and patch clamp techniques, and molecular and structural biology approaches. The course will cover structure of various potassium, calcium, sodium, and chloride channels and their physiological function in neural, cardiac, and muscle cells. Exemplary channels that have been best studied will be discussed to illustrate the current understanding of the molecular mechanisms of channel gating and permeation. Graduate students will present exemplary papers in the journal club style. Recommended preparation: EBME 201 or equivalent. Offered as EBME 317 and EBME 417.
-
1.00 Credits
Experiments for measurement, assisting, replacement, or control of various biomedical systems. Students choose a few lab experiences from a large number of offerings relevant to all BME sequences. Experiments are conducted primarily in faculty labs with 3-8 students participating. Recommended preparation: ENGR 210. Prereq: BME Major, EBME 201, EBME 202 and Prereq or Coreq: EBME 308.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|