|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
In this course, students will examine how neurobiologists interested in animal behavior study the linkage between neural circuitry and complex behavior. Various vertebrate and invertebrate systems will be considered. Several exercises will be used in this endeavor. Although some lectures will provide background and context on specific neural systems, the emphasis of the course will be on classroom discussion of specific journal articles. In addition, students will each complete a project in which they will observe some animal behavior and generate both behavioral and neurobiological hypotheses related to it. In lieu of examinations, students will complete three written assignments, including a theoretical grant proposal, a one-page Specific Aims paper related to the project, and a final project paper. These assignments are designed to give each student experience in writing biologically-relevant documents. Classroom discussions will help students understand the content and format of each type document. They will also present their projects orally to the entire class. Offered as BIOL 374, BIOL 474, and NEUR 474.
-
3.00 Credits
Introduction to the basic laboratory techniques of neurobiology. Intracellular and extracellular recording techniques, forms of synaptic plasticity, patch clamping, immunohistochemistry and confocal microscopy. During the latter weeks of the course students will be given the opportunity to conduct an independent project. One laboratory and one discussion session per week. Recommended preparation for BIOL 476 and NEUR 476: BIOL 216. Offered as BIOL 376, BIOL 476 and NEUR 476. Prereq: BIOL 216 or BIOL 251.
-
3.00 Credits
Many exciting research opportunities cross disciplinary lines. To participate in such projects, researchers must operate in multi-disciplinary teams. The Biorobotics Team Research course offers a unique capstone opportunity for undergraduate students to utilize skills they developed during their undergraduate experience while acquiring new teaming skills. A group of eight students form a research team under the direction of two faculty leaders. Team members are chosen from appropriate majors through interviews with the faculty. They will research a biological mechanism or principle and develop a robotic device that captures the actions of that mechanism. Although each student will cooperate on the team, they each have a specific role, and must develop a final paper that describes the research generated on their aspect of the project. Students meet for one class period per week and two 2-hour lab periods. Initially students brainstorm ideas and identify the project to be pursued. They then acquire biological data and generate robotic designs. Both are further developed during team meetings and reports. Final oral reports and a demonstration of the robotic device occur in week 15. Offered as BIOL 377, EMAE 377, BIOL 477, and EMAE 477.
-
3.00 Credits
Computer simulations and mathematical analysis of neurons and neural circuits, and the computational properties of nervous systems. Students are taught a range of models for neurons and neural circuits, and are asked to implement and explore the computational and dynamic properties of these models. The course introduces students to dynamical systems theory for the analysis of neurons and neural learning, models of brain systems, and their relationship to artificial and neural networks. Term project required. Students enrolled in MATH 478 will make arrangements with the instructor to attend additional lectures and complete additional assignments addressing mathematical topics related to the course. Recommended preparation: MATH 223 and MATH 224 or BIOL 300 and BIOL 306. Offered as BIOL 378, COGS 378, MATH 378, BIOL 478, EBME 478, EECS 478, MATH 478 and NEUR 478.
-
3.00 Credits
The course focus is neuroanatomy and neurophysiology related to motor control and cognition, particularly aspects of cognition involved in language functions. Topics to be addressed include: principles of neurophysiology and neurochemistry; functional neuroanatomy of the central and peripheral nervous systems; neurological and neuropsychological assessment of communication; neurodiagnostic methods. In part, the course material will be presented in a problem-based learning format. That is, normal aspects of human neuroscience will be discussed in the context of neurological disorders affecting communication. COSI 405 is an introduction to COSI 557 and COSI 561. Offered as BIOL 379 and COSI 305 and COSI 405.
-
3.00 Credits
This course is concerned with the mechanisms underlying neurochemical signaling and the impact of drugs on those mechanisms. The first half of the course emphasizes the fundamental mechanisms underlying intra- and extracellular communication of neurons and the basic principles of how drugs interact with the nervous system. The second half of the course emphasizes understanding the neural substrates of disorders of the nervous system, and the mechanisms underlying the therapeutic effects of drugs at the cellular and behavioral levels. This course will consist of lectures designed to give the student necessary background for understanding these basic principles and class discussion. The class discussion will include viewing video examples of behavioral effects of disorders of the nervous system, and analysis of research papers. The goal of the class discussions is to enhance the critical thinking skills of the student and expose the student to contemporary research techniques. Offered as BIOL 382, BIOL 482, and NEUR 482. Prereq: BIOL 215 and BIOL 216 or BIOL 250 and BIOL 251
-
3.00 Credits
Students usually learn from textbooks, but scientists communicate with each other through journal articles. The purpose of this class is to help you learn to read and write like an ecologist. We will spend our time reading and discussing journal articles about three or four issues in ecology, including papers from both empirical and theoretical perspectives. In addition to the science, we'll talk about strategies for how to keep reading when you encounter something you don't understand and what makes a paper well or poorly written. At the end of each section, you will synthesize your ideas into a review article. Your initial paper will be submitted to me as hypothetical journal editor. I will send your paper out for review to two fellow classmates, and I'll send their comments back to you along with brief comments of my own. As all scientists know, it is virtually unheard of for a journal to accept a paper for publication without revisions. After this peer review, you will revise your papers and resubmit them to me. Your grade will be based on your participation in class discussions, your papers (both drafts) and your work as a reviewer for other students. Prereq: BIOL 214 or BIOL 251.
-
3.00 Credits
Students will read and discuss research papers on a range of topics relevant to the biological processes that lead to cognition and learning in humans. Sample topics are: cellular and molecular mechanisms of memory; visual sensory detection of images, movement, and color; role of slow neurotransmitters in synaptic plasticity; cortical distribution of cognitive functions such as working memory, decision making, and image analysis; functions of emotion-structures and their role in cognition; brain structures and mechanisms involved in language creation; others. Some papers will be assigned and others will be selected by students. Discussions will focus on the methods used, the experimental results, and the interpretations of significance. Students will work in groups on a semester project to be presented near the end of the semester. Prereq: BIOL 302.
-
1.00 - 3.00 Credits
Guided laboratory research under the sponsorship of a biology faculty member. May be carried out within the biology department or in associated departments. May be taken only one semester during the student's academic career. Appropriate forms must be secured in the biology department office. A written report must be approved by the biology sponsor and submitted to the chairman of the biology department before credit is granted.
-
3.00 Credits
Guided laboratory research under the sponsorship of a biology faculty member. May be carried out within the biology department or in associated departments. May be taken only one semester during the student's academic career. Appropriate forms must be secured in the biology department office. A written report must be approved by the biology sponsor and submitted to the chairman of the biology department before credit is granted. A public presentation is required.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|