Course Criteria

Add courses to your favorites to save, share, and find your best transfer school.
  • 3.00 Credits

    Building on the material in Biology 300, this course focuses on the mathematical tools used to construct and analyze biological models, with examples drawn largely from ecology but also from epidemiology, developmental biology, and other areas. Analytic "paper and pencil" techniques are emphasized, but we will also use computers to help develop intuition. By the end of the course, students should be able to recognize basic building blocks in biological models, be able to perform simple analysis, and be more fluent in translating between verbal and mathematical descriptions. Offered as BIOL 306 and MATH 376. Prereq: BIOL 300 or MATH 224 or MATH 228.
  • 3.00 Credits

    Important events in the evolution of invertebrate life, as well as structure, function, and phylogeny of major invertebrate groups.
  • 4.00 Credits

    An examination of the flow of genetic information from DNA to RNA to protein. Topics include: nucleic acid structure; mechanisms and control of DNA, RNA, and protein biosynthesis; recombinant DNA; and mRNA processing and modification. Where possible, eukaryotic and prokaryotic systems are compared. Special topics include yeast as a model organism, molecular biology of cancer, and molecular biology of the cell cycle. Current literature is discussed briefly as an introduction to techniques of genetic engineering. Recommended preparation for BIOC 408 and BIOL 408: BIOC 307 or BIOL 214. Offered as BIOC 308, BIOL 308, BIOC 408, and BIOL 408. Prereq: BIOL 215 or BIOC 307.
  • 1.00 Credits

    The purpose of this seminar is to introduce students to some of the research being done at Case that explores questions at the intersection of mathematics and biology. Students will explore roughly five research collaborations, spending two weeks with each research group. In the first three classes of each two-week block, students will read and discuss relevant papers, guided by members of that research group, and the two-week period will culminate in a talk in which a member of the research group will present a potential undergraduate project in that area. After the final group's talk, students will divide themselves into groups of two to four people and choose one project for further exploration. Together, they will write up this project as a research proposal, introducing the problem, explaining how it connects to broader scientific questions, and outlining the proposed work. It is expected that students will use the associated research group as a resource, but the proposal should be their own work. Students will submit a first draft, receive feedback, and then submit a revised draft. Offered as BIOL 309 and MATH 342.
  • 3.00 Credits

    This course explores sculptural/architectural possibilities within three environmental realms: the natural, urban, and social/communal. The definition and application of "Sculpture" and "Architecture" may vary dramatically from project to project, where the boundary between sculpture and architecture may be blurred. Throughout, an emphasis on ecological awareness will be maintained, as it relates to environmental impact of structures in the landscape, as well as the materials and pathway of construction. This course satisfies a laboratory requirement for the biology major.
  • 4.00 Credits

    This course examines the notions of intelligence, cognition, reasoning, consciousness, and mental content as they appear in the philosophical views and empirical studies of animals in individual and social contexts. We will review scientific findings that suggest striking likenesses and intriguing differences in the (apparent) thought processes of humans and animals, and ask whether the research techniques that brought us these results are fully adequate to measuring such unobservable entities as conscious experience and thought. Techniques of measurement range from naturalistic observation, to the processing of vocalizations, to memory and problem solving tasks, and the imaging of brain processes through fMRI scans, etc. Students will face the challenges and rewards of practicing these techniques and reworking philosophical theories in the service component of the course. Students will participate in veterinary or shelter work to provide needed animal care while studying animal behavior using cognitive ethological methods. We will compare methods for measuring consciousness and intelligence in animals to those used for human beings, and ask questions about the possibility of machine consciousness and the emergent property of group consciousness. Offered as BIOL 314, COGS 314, PHIL 314 and PHIL 414.
  • 3.00 Credits

    This course will apply a range of quantitative techniques to explore structure-function relations in biological systems. Using a case study approach, students will explore causes of impairments of normal function, will assemble diverse sets of information into a database format for the analysis of causes of impairment, will analyze the data with appropriate statistical and other quantitative tools, and be able to communicate their results to both technical and non-technical audiences. The course has one lecture and one lab per week. Students will be required to maintain a journal of course activities and demonstrate mastery of quantitative tools and statistical techniques. Graduate students will have a final project that applies these techniques to a problem of their choice. Offered as BIOL 315 and BIOL 415. Prereq: BIOL 214 or BIOL 251.
  • 4.00 Credits

    Introductory immunology providing an overview of the immune system, including activation, effector mechanisms, and regulation. Topics include antigen-antibody reactions, immunologically important cell surface receptors, cell-cell interactions, cell-mediated immunity, innate versus adaptive immunity, cytokines, and basic molecular biology and signal transduction in B and T lymphocytes, and immunopathology. Three weekly lectures emphasize experimental findings leading to the concepts of modern immunology. An additional recitation hour is required to integrate the core material with experimental data and known immune mediated diseases. Five mandatory 90 minute group problem sets per semester will be administered outside of lecture and recitation meeting times. Graduate students will be graded separately from undergraduates, and 22 percent of the grade will be based on a critical analysis of a recently published, landmark scientific article. Offered as BIOL 316, BIOL 416, CLBY 416, and PATH 416. Prereq: BIOL 215 and 215L.
  • 4.00 Credits

    The goal of this course is to discover that, for the most part, insects are not aliens from another planet. Class meetings will alternate; with some structured as lectures, while others are laboratory exercises. Sometimes we will meet at the Cleveland Museum of Natural History, or in the field to collect and observe insects. The 50 minute discussion meeting once a week will serve to address questions from both lectures and lab exercises. The students will be required to make a small but comprehensive insect collection. Early in the semester we will focus on collecting the insects, and later, when insects are gone for the winter, we will work to identify the specimens collected earlier. Students will be graded based on exams, class participation and their insect collections. Offered as BIOL 318 and BIOL 418. Prereq: BIOL 214 and BIOL 215 and BIOL 216 or BIOL 250 and BIOL 251
  • 3.00 Credits

    Applications of probability and stochastic processes to biological systems. Mathematical topics will include: introduction to discrete and continuous probability spaces (including numerical generation of pseudo random samples from specified probability distributions), Markov processes in discrete and continuous time with discrete and continuous sample spaces, point processes including homogeneous and inhomogeneous Poisson processes and Markov chains on graphs, and diffusion processes including Brownian motion and the Ornstein-Uhlenbeck process. Biological topics will be determined by the interests of the students and the instructor. Likely topics include: stochastic ion channels, molecular motors and stochastic ratchets, actin and tubulin polymerization, random walk models for neural spike trains, bacterial chemotaxis, signaling and genetic regulatory networks, and stochastic predator-prey dynamics. The emphasis will be on practical simulation and analysis of stochastic phenomena in biological systems. Numerical methods will be developed using both MATLAB and the R statistical package. Student projects will comprise a major part of the course. Offered as BIOL 319, EECS 319, MATH 319, BIOL 419, EBME 419, and PHOL 419. Prereq: MATH 224 or MATH 223 and BIOL 300 or BIOL 306 and MATH 201 or MATH 307 or consent of instructor.
To find college, community college and university courses by keyword, enter some or all of the following, then select the Search button.
(Type the name of a College, University, Exam, or Corporation)
(For example: Accounting, Psychology)
(For example: ACCT 101, where Course Prefix is ACCT, and Course Number is 101)
(For example: Introduction To Accounting)
(For example: Sine waves, Hemingway, or Impressionism)
Distance:
of
(For example: Find all institutions within 5 miles of the selected Zip Code)
Privacy Statement   |   Terms of Use   |   Institutional Membership Information   |   About AcademyOne   
Copyright 2006 - 2024 AcademyOne, Inc.