|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
1.00 - 2.00 Credits
Seminar run collaboratively by graduate students to investigate an area of current research, the topic chosen each semester. All graduate students participate in presentation of material each semester. Satisfies requirement for every full-time graduate student to enroll in a participatory seminar every semester while registered in any graduate degree program. Recommended preparation: Graduate standing.
-
1.00 - 3.00 Credits
This course unifies what students have learned in their course work to apply their knowledge in consulting. It recognizes the fact that the essence of the statistical profession is continuing interaction with practitioners in the sciences, engineering, medicine, economics, etc. The course presents the views of prominent experts in the field as obtained from the literature and other sources. The responsibilities of the consultant and the client are discussed. Sample consulting problems are presented and strategies for solving them are provided. Prereq: STAT 325 or STAT 425.
-
3.00 Credits
This course is designed to provide a hands-on experience with statistical consulting under the guidance of the instructor. It will include discussion of practical aspects of consulting such as the entrepreneurial nature of this activity. The students will become involved in actual consulting projects generated in a collaborative environment. Statistical problems, together with their substantive background, will be presented by individuals from the private sector (e.g., from industry) and/or CWRU faculty and students. Selected problems will be addressed in a collaborative fashion; i.e., by a team involving graduate students from the Statistics Department, the course instructor, and scientists. Some of these problems may lead to collaborative research or entrepreneurial ventures. Prereq: STAT 495A, STAT 325, or STAT 425 or consent of department.
-
3.00 Credits
Topics drawn from resampling methods (including bootstrapping), MCMC (Gibbs sampling), nonparametric curve and surface fitting, kernel density estimation, projection pursuit, mixture models, time series (time permitting), approaches to model uncertainty, models for repeated measures and structural-functional models, statistical inference for large systems, modern data analysis techniques. Recommended preparation: STAT 426 or permission of department.
-
3.00 Credits
Special topics drawn from statistical computing, complex system and dynamic computation. Oriented to research. Prereq: STAT 427.
-
3.00 Credits
Introduction to stochastic modeling of data. Emphasis on models and statistical analysis of data with significant temporal and/or spatial structure. This course will analyze time and space dependent random phenomena from two perspectives: Brownian motion and diffusive processes: Classification of stochastic processes, finite dimensional distributions, random walks and their scaling limits, Brownian motion and its paths properties, general diffusive processes, Fokker-Planck-Kolmogorov equations, Poisson and point processes, heavy tail diffusions, Levy processes, tempered stable diffusions. Stochastic calculus and stochastic differential equations: Wiener random integrals, mean-square theory, Brownian stochastic integrals and Ito formula, stochastic integrals for Levy processes, martingale property, basic theory and applications of stochastic differential equations. This course is related to STAT 437 but can be taken independently of it. Prereq: STAT 312 or equivalent.
-
3.00 Credits
A systematic development of advanced statistical theory. Background concepts. Limits, order comparisons, convergence. Sample moments, quantiles and other statistics. Transformations. Characterization of distribution functions and characteristic functions. Normal and other approximations to distributions. Quadratic forms and other functions of asymptotically normal statistics. Asymptotic properties of statistics including asymptotic efficiency, consistency. Admissibility, sufficiency and ancillarity. Nuisance parameters, parameter orthogonality. Distribution theory in nuisance parameters. Recommended preparation: STAT 446.
-
1.00 - 3.00 Credits
For advanced graduate students. Topics in specialized areas of statistical theory and methodology, with emphasis on recent advances in theory, developments of new methodology and definition of new research questions. Topics may change from year to year. Number of credit hours for the class will be predetermined each semester based on the material to be presented.
-
1.00 - 3.00 Credits
Advanced topics in specialized areas of statistics and stochastic modeling designed to define new research directions drawing on recent advances in theory and model formulation. Focus on statistical issues arising in the application of statistical or stochastic models to new substantive research efforts. Topics may change from year to year. Number of credit hours for the class will be predetermined each semester based on the material to be presented.
-
1.00 - 9.00 Credits
Individual study and/or project work.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|