|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Extensions of exploratory data analysis and modeling to multivariate response observations and to non-Gaussian data. Singular value decomposition and projection, principal components, factor analysis and latent structure analysis, discriminant analysis and clustering techniques, cross-validation, E-M algorithm, CART. Introduction to generalized linear modeling. Case studies of complex data sets with multiple objectives for analysis. Recommended preparation: STAT 325/425. Offered as STAT 326 and STAT 426.
-
3.00 Credits
Basic topics in statistical computing: floating point arithmetic; seminumerical computation including generation and test of random numbers, Monte Carlo methods, variance reduction methods, stochastic models and simulation studies; numerical computation including numerical linear algebra, optimization and root-rinding, numerical integration; some graphical and symbolic computations, special topics in statistical computing: resampling methods, EM algorithms, Gibbs sampling and projection pursuit. Prereq: STAT 345 or STAT 425 or permission of department.
-
3.00 Credits
For advanced undergraduate students or beginning graduate students in engineering, physical sciences, life sciences. Introduction to probability models and statistical methods. Emphasis on probability as relative frequencies. Derivation of conditional probabilities and memoryless channels. Joint distribution of random variables, transformations, autocorrelation, series of irregular observations, stationarity. Random harmonic signals with noise, random phase and/or random amplitude. Gaussian and Poisson signals. Modulation and averaging properties. Transmission through linear filters. Power spectra, bandwidth, white and colored noise. ARMA processes and forecasting. Optimal linear systems, signal-to-noise ratio, Wiener filter. Completion of additional assignments required from graduate students registered in this course. Offered as STAT 332 and STAT 432. Prereq: MATH 122.
-
3.00 Credits
Phenomena of uncertainty appear in engineering and science for various reasons and can be modeled in different ways. The course integrates the mainstream ideas in statistical data analysis with models of uncertain phenomena stemming from three distinct viewpoints: algorithmic/computational complexity; classical probability theory; and chaotic behavior of nonlinear systems. Descriptive statistics, estimation procedures and hypothesis testing (including design of experiments). Random number generators and their testing. Monte Carlo Methods. Mathematica notebooks and simulations will be used. Note: Credit given for only one (1) of STAT 312, 313, 333, 433. Graduate students are required to do an extra project. Offered as STAT 333 and STAT 433. Prereq: MATH 122 or MATH 223.
-
3.00 Credits
Introduction to stochastic modeling of data. Emphasis on models and statistical analysis of data with a significant temporal and/or spatial structure. This course will analyze time and space dependent random phenomena from two perspectives: Stationary Time Series: Spectral representation of deterministic signals, autocorrelation. Power spectra. Transmission of stationary signals through linear filters. Optimal filter design, signal-to-noise ratio. Gaussian signals and correlation matrices. Spectral representation and computer simulation of stationary signals. Discrete Markov Chains: Transition matrices, recurrences and the first step analysis. Steady rate. Recurrence and ergodicity, empirical averages. Long run behavior, convergence to steady state. Time to absorption. Eigenvalues and nonhomogeneous Markov chains. Introduction to Gibbs fields and Markov Chain Monte Carlo (MCMC). This course is related to STAT 538 but can be taken independently of it. Prereq: STAT 312 or equivalent.
-
3.00 Credits
This course will embed numerical methods into a Bayesian framework. The statistical framework will make it possible to integrate a prori information about the unknowns and the error in the data directly into the most efficient numerical methods. A lot of emphasis will be put on understanding the role of the priors, their encoding into fast numerical solvers, and how to translate qualitative or sample-based information--or lack thereof--into a numerical scheme. Confidence on computed results will also be discussed from a Bayesian perspective, at the light of the given data and a priori information. The course should be of interest to anyone working on signal and image processing statistics, numerical analysis and modeling. Recommended Preparation: MATH 431. Offered as MATH 439 and STAT 439.
-
3.00 Credits
Topics provide the background for statistical inference. Random variables; distribution and density functions; transformations, expectation. Common univariate distributions. Multiple random variables; joint, marginal and conditional distributions; hierarchical models, covariance. Distributions of sample quantities, distributions of sums of random variables, distributions of order statistics. Methods of statistical inference. Offered as STAT 345, STAT 445, and EPBI 481. Prereq: MATH 122 or MATH 223 or Coreq: EPBI 431.
-
3.00 Credits
Point estimation: maximum likelihood, moment estimators. Methods of evaluating estimators including mean squared error, consistency, "best" unbiased and sufficiency. Hypothesis testing; likelihood ratio and union-intersection tests. Properties of tests including power function, bias. Interval estimation by inversion of test statistics, use of pivotal quantities. Application to regression. Graduate students are responsible for mathematical derivations, and full proofs of principal theorems. Offered as STAT 346, STAT 446 and EPBI 482. Prereq: STAT 345 or STAT 445 or EPBI 481.
-
3.00 Credits
Principles of Bayesian theory, methodology and applications. Methods for forming prior distributions using conjugate families, reference priors and empirically-based priors. Derivation of posterior and predictive distributions and their moments. Properties when common distributions such as binomial, normal or other exponential family distributions are used. Hierarchical models. Computational techniques including Markov chain, Monte Carlo and importance sampling. Extensive use of applications to illustrate concepts and methodology. Recommended preparation: STAT 445.
-
3.00 Credits
Theory of least squares estimation, interval estimation and tests for models with normally distributed errors. Regression on dummy variables, analysis of variance and covariance. Variance components models. Model diagnostics. Robust regression. Analysis of longitudinal data. Prereq: MATH 201 and STAT 346 or STAT 446
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|