|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Metric spaces, topological spaces, and continuous functions. Compactness, connectedness, path connectedness. Topological manifolds; topological groups. Polyhedra, simplical complexes. Fundamental groups. Prereq: MATH 224 or MATH 228.
-
3.00 Credits
The fundamental group and covering spaces; van Kampen's theorem. Higher homotopy groups; long-exact sequence of a pair. Homology theory; chain complexes; short and long exact sequences; Mayer-Vietoris sequence. Homology of surfaces and complexes; applications. Prereq: MATH 461.
-
3.00 Credits
Manifolds and differential geometry. Vector fields; Riemannian metrics; curvature; intrinsic and extrinsic geometry of surfaces and curves; structural equations of Riemannian geometry; the Gauss-Bonnet theorem. Prereq: MATH 321.
-
3.00 Credits
Differentiable manifolds and structures on manifolds. Tangent and cotangent bundle; vector fields; differential forms; tensor calculus; integration and Stokes' theorem. May include Hamiltonian systems and their formulation on manifolds; symplectic structures; connections and curvature; foliations and integrability. Prereq: MATH 322.
-
3.00 Credits
Vector analysis, Fourier series and integrals. Laplace transforms, separable partial differential equations, and boundary value problems. Bessel and Legendre functions. Emphasis on techniques and applications. Prereq: MATH 224 or MATH 228.
-
3.00 Credits
The mathematics of image reconstruction; properties of radon transform, relation to Fourier transform; inversion methods, including convolution, backprojection, rho-filtered layergram, algebraic reconstruction technique (ART), and orthogonal polynomial expansions. Reconstruction from fan beam geometry, limited angle techniques used in MRI; survey of applications. Recommended preparation: PHYS 431 or MATH 471.
-
3.00 Credits
Computer simulations and mathematical analysis of neurons and neural circuits, and the computational properties of nervous systems. Students are taught a range of models for neurons and neural circuits, and are asked to implement and explore the computational and dynamic properties of these models. The course introduces students to dynamical systems theory for the analysis of neurons and neural learning, models of brain systems, and their relationship to artificial and neural networks. Term project required. Students enrolled in MATH 478 will make arrangements with the instructor to attend additional lectures and complete additional assignments addressing mathematical topics related to the course. Recommended preparation: MATH 223 and MATH 224 or BIOL 300 and BIOL 306. Offered as BIOL 378, COGS 378, MATH 378, BIOL 478, EBME 478, EECS 478, MATH 478 and NEUR 478.
-
3.00 Credits
Probabilistic concepts. Discrete probability, elementary distributions. Measure theoretic framework of probability theory. Probability spaces, sigma algebras, expectations, distributions. Independence. Classical results on almost sure convergence of sums of independent random variables. Kolmogorov's law of large numbers. Recurrence of sums. Weak convergence of probability measures. Inversion, Levy's continuity theorem. Central limit theorem. Introduction to the central limit problem. Prereq: MATH 423.
-
3.00 Credits
Conditional expectations. Discrete parameter martingales. Stopping times, optional stopping. Discrete parameter stationary processes and ergodic theory. Discrete time Markov processes. Introduction to continuous parameter stochastic processes. Kolmogorov's consistency theorem. Gaussian processes. Brownian motion theory (sample path properties, strong Markov property, Martingales associated to Brownian motion, functional central limit theorem). Prereq: MATH 491.
-
3.00 Credits
This course is intended as an introduction to information and coding theory with emphasis on the mathematical aspects. It is suitable for advanced undergraduate and graduate students in mathematics, applied mathematics, statistics, physics, computer science and electrical engineering. Course content: Information measures-entropy, relative entropy, mutual information, and their properties. Typical sets and sequences, asymptotic equipartition property, data compression. Channel coding and capacity: channel coding theorem. Differential entropy, Gaussian channel, Shannon-Nyquist theorem. Information theory inequalities (400 level). Additional topics, which may include compressed sensing and elements of quantum information theory. Recommended Preparation: MATH 201 or MATH 307. Offered as MATH 394, EECS 394, MATH 494 and EECS 494.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|