|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Numerical solution of differential equations for scientists and engineers. Solution of ordinary differential equations by multistep and single step methods. Stability, consistency, and convergence. Stiff equations. Finite difference schemes. Introduction to the finite element method. Introduction to multigrid techniques. The diffusion equation: numerical schemes and stability analysis. Introduction to hyperbolic equations. MATLAB will be used in this course. Prereq: MATH 224 or MATH 228.
-
3.00 Credits
The course provides an introduction to numerical solution methods for systems of nonlinear equations and optimization problems. The course is suitable for upper-undergraduate and graduate students with some background in calculus and linear algebra. Knowledge of numerical linear algebra is helpful. Among the topics which will be covered in the course are Nonlinear systems in one variables; Newton's method for nonlinear equations and unconstrained minimization; Quasi-Newton methods; Global convergence of Newton's methods and line searches; Trust region approach; Secant methods; Nonlinear least squares. Prereq: MATH 223 or MATH 227, and MATH 431 or permission.
-
3.00 Credits
Fundamentals of dynamic optimization with applications to control. Variational treatment of control problems and the Maximum Principle. Structures of optimal systems; regulators, terminal controllers, time-optimal controllers. Sufficient conditions for optimality. Singular controls. Computational aspects. Selected applications. Recommended preparation: EECS 408. Offered as EECS 421 and MATH 434.
-
3.00 Credits
A second course in ordinary differential equations. Existence, uniqueness, and continuation of solutions of ODE. Linear systems, fundamental matrix, qualitative methods (phase plane). Dependence on initial data and parameters (Gronwall's inequality, nonlinear variation of parameters). Stability for linear and nonlinear equations, linearization, Poincare-Bendixson theory. Additional topics may include regular and singular perturbation methods, autonomous oscillations, entrainment of forced oscillators, and bifurcations. Prereq: MATH 224 and either MATH 201 or MATH 307.
-
3.00 Credits
This course will embed numerical methods into a Bayesian framework. The statistical framework will make it possible to integrate a prori information about the unknowns and the error in the data directly into the most efficient numerical methods. A lot of emphasis will be put on understanding the role of the priors, their encoding into fast numerical solvers, and how to translate qualitative or sample-based information--or lack thereof--into a numerical scheme. Confidence on computed results will also be discussed from a Bayesian perspective, at the light of the given data and a priori information. The course should be of interest to anyone working on signal and image processing statistics, numerical analysis and modeling. Recommended Preparation: MATH 431. Offered as MATH 439 and STAT 439.
-
3.00 Credits
This course will introduce various computational methods for solving inverse problems under different conditions. First the classical regularization methods will be introduced, and the computational challenges which they pose, will be addressed. Following this, the statistical methods for solving inverse problems will be studied and their computer implementation discussed. We will combine the two approaches to best exploit their potentials. Applications arising from various areas of science, engineering, and medicine will be discussed throughout the course.
-
3.00 Credits
Mathematics is a powerful language for describing real world phenomena and providing predictions that otherwise are hard or impossible to obtain. The course gives the students pre-requisites for translating qualitative descriptions given in the professional non-mathematical language into the quantitative language for mathematics. While the variety in the subject matter is wide, some general principles and methodologies that a modeler can pursue are similar in many applications. The course focuses on these similarities. The course is based on representative case studies that are discussed and analyzed in the classroom, the emphasis being on general principles of developing and analyzing mathematical models. The examples will be taken from different fields of science and engineering, including life sciences, environmental sciences, biomedical engineering and physical sciences. Modeling relies increasingly on computation, so the students should have basic skills for using computers and programs like Matlab or Mathematica. Prereq: MATH 224 or MATH 228.
-
3.00 Credits
This course will give an introduction to a class of mathematical and computational methods for the solution of data mining and pattern recognition problems. By understanding the mathematical concepts behind algorithms designed for mining data and identifying patterns, students will be able to modify to make them suitable for specific applications. Particular emphasis will be given to matrix factorization techniques. The course requirements will include the implementations of the methods in MATLAB and their application to practical problems. Prereq: MATH 201 or MATH 307.
-
3.00 Credits
Method of characteristics for linear and quasilinear equations. Second order equations of elliptic, parabolic, type; initial and boundary value problems. Method of separation of variables, eigenfunction expansions, Sturm-Liouville theory. Fourier, Laplace, Hankel transforms; Bessel functions, Legendre polynomials. Green's functions. Examples include: heat diffusion, Laplace's equation, wave equations, one dimensional gas dynamics and others. Appropriate for seniors and graduate students in science, engineering, and mathematics. Prereq: MATH 201 or MATH 308 and MATH 224 or MATH 228.
-
3.00 Credits
Introduction to discrete and continuous dynamical models with applications to biology and medicine. Topics include: population dynamics and ecology; models of infectious diseases; population genetics and evolution; biological motion (reaction-diffusion and chemotaxis); Molecular and cellular biology (biochemical kinetics, metabolic pathways, immunology). The course will introduce students to the basic mathematical concepts and techniques of dynamical systems theory (equilibria, stability, bifurcations, discrete and continuous dynamics, diffusion and wave propagation, elements of system theory and control). Mathematical exposition is supplemented with introduction to computer tools and techniques (Mathematica, Matlab). Prereq: MATH 224 or MATH 228, or BIOL/EBME 300, and MATH 201.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|