|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
4.00 Credits
Capstone course for computer science seniors. Material from previous and concurrent courses used to solve computer programming problems and to develop software systems. Professional engineering topics such as project management, engineering design, communications, and professional ethics. Requirements include periodic reporting of progress, plus a final oral presentation and written report. Scheduled formal project presentations during last week of classes. Prereq: Senior standing.
-
1.00 - 6.00 Credits
Independent projects in Computer Engineering, Computer Science, Electrical Engineering, and Systems and Control Engineering. Limited to juniors and seniors. Prereq: Limited to juniors and seniors.
-
1.00 - 6.00 Credits
Special topics in Computer Engineering, Computer Science, Electrical Engineering, and Systems and Control Engineering. Prereq: Limited to juniors and seniors.
-
4.00 Credits
Capstone course for electrical, computer and systems and control engineering seniors. Material from previous and concurrent courses used to solve engineering design problems. Professional engineering topics such as project management, engineering design, communications, and professional ethics. Requirements include periodic reporting of progress, plus a final oral presentation and written report. Scheduled formal project presentations during last week of classes. Prereq: Senior Standing. Prereq or Coreq: ENGR 398 and ENGL 398.
-
3.00 Credits
Continuation of EECS 398. Material from previous and concurrent courses applied to engineering design and research. Requirements include periodic reporting of progress, plus a final oral presentation and written report. Prereq: Senior Standing.
-
0.00 Credits
This course will provide the Ph.D. candidate with experience in teaching undergraduate or graduate students. The experience is expected to involve direct student contact but will be based upon the specific departmental needs and teaching obligations. This teaching experience will be conducted under the supervision of the faculty member who is responsible for the course, but the academic advisor will assess the educational plan to ensure that it provides an educational experience for the student. Students in this course may be expected to perform one or more of the following teaching related activities: grading homeworks, quizzes, and exams, having office hours for students, tutoring students. Recommended preparation: Ph.D. student in EECS department.
-
3.00 Credits
Characterization of discrete-time signals and systems. Fourier analysis: the Discrete-time Fourier Transform, the Discrete-time Fourier series, the Discrete Fourier Transform and the Fast Fourier Transform. Continuous-time signal sampling and signal reconstruction. Digital filter design: infinite impulse response filters, finite impulse response filters, filter realization and quantization effects. Random signals: discrete correlation sequences and power density spectra, response of linear systems. Recommended preparation: EECS 313.
-
3.00 Credits
Fundamental concepts: sequential allocation, linked allocation, lists, trees, graphs, internal sorting, external sorting, sequential, binary, interpolation search, hashing file, indexed files, multiple level index structures, btrees, hashed files. Multiple attribute retrieval; inverted files, multi lists, multiple-key hashing, hd trees. Introduction to data bases. Data models. Recommended preparation: EECS 233 and MATH 304.
-
3.00 Credits
Analysis and design of linear feedback systems using state-space techniques. Review of matrix theory, linearization, transition maps and variations of constants formula, structural properties of state-space models, controllability and observability, realization theory, pole assignment and stabilization, linear quadratic regulator problems, observers, and the separation theorem. Recommended preparation: EECS 304.
-
3.00 Credits
A broad range of system behavior can be described using a discrete event framework. These systems are playing an increasingly important role in modeling, analyzing, and designing manufacturing systems. Simulation, automata, and queuing theory have been the primary tools for studying the behavior of these logically complex systems; however, new methods and techniques as well as new modeling frameworks have been developed to represent and to explore discrete event system behavior. The class will begin by studying simulation, the theory of languages, and finite state automata, and queuing theory approaches and then progress to examining selected additional frameworks for modeling and analyzing these systems including Petrinets, perturbation analysis, and Min-Max algebras.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|