|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
1.00 Credits
A laboratory course based on the material in EECS 304. Modeling, simulation, and analysis using MATLAB. Physical experiments involving control of mechanical systems, process control systems, and design of PID controllers. Coreq: EECS 304.
-
3.00 Credits
Maxwell's integral and differential equations, boundary conditions, constitutive relations, energy conservation and Pointing vector, wave equation, plane waves, propagating waves and transmission lines, characteristic impedance, reflection coefficient and standing wave ratio, in-depth analysis of coaxial and strip lines, electro- and magneto-quasistatics, simple boundary value problems, correspondence between fields and circuit concepts, energy and forces. Prereq: PHYS 122. Prereq or Coreq: MATH 224.
-
3.00 Credits
This course is intended to be an introduction to three-phase electric power systems. Modeling of system components including generators, transformers, loads, transmission lines. The per-unit system. One-line diagrams and equivalent circuits. Real and reactive power. Phasor diagrams. Voltage and frequency regulation. Load-flow analysis. Short-circuit calculations. Fault analysis using the techniques of symmetrical component analysis.
-
3.00 Credits
Fourier series and transforms. Analog and digital filters. Fast-Fourier transforms, sampling, and modulation for discrete time signals and systems. Consideration of stochastic signals and linear processing of stochastic signals using correlation functions and spectral analysis. Prereq: EECS 246.
-
3.00 Credits
This course provides students the opportunity to study and evaluate a modern computer architecture design. The course covers topics in fundamentals of computer design, performance, cost, instruction set design, processor implementation, control unit, pipelining, communication and network, memory hierarchy, computer arithmetic, input-output, and an introduction to RISC and super-scalar processors. Recommended preparation: EECS 281.
-
4.00 Credits
This course gives students the ability to design modern digital circuits. The course covers topics in logic level analysis and synthesis, digital electronics: transistors, CMOS logic gates, CMOS lay-out, design metrics space, power, delay. Programmable logic (partitioning, routing), state machine analysis and synthesis, register transfer level block design, datapath, controllers, ASM charts, microsequencers, emulation and rapid protyping, and switch/logic-level simulation. Recommended preparation: EECS 281.
-
3.00 Credits
Methodologies for systematic design of digital systems with emphasis on programmable logic implementations and prototyping. Laboratory which uses modern design techniques based on hardware description languages such as VHDL, CAD tools, and Field Programmable Gate Arrays (FPGAs). Recommended preparation: EECS 281; EECS 315 or consent of instructor.
-
4.00 Credits
With Very Large Scale Integration (VLSI) technology there is an increased need for Computer-Aided Design (CAD) techniques and tools to help in the design of large digital systems that deliver both performance and functionality. Such high performance tools are of great importance in the VLSI design process, both to perform functional, logical, and behavioral modeling and verification to aid the testing process. This course discusses the fundamentals in behavioral languages, both VHDL and Verilog, with hands-on experience. Recommended preparation: EECS 281, EECS 315.
-
3.00 Credits
Applications of probability and stochastic processes to biological systems. Mathematical topics will include: introduction to discrete and continuous probability spaces (including numerical generation of pseudo random samples from specified probability distributions), Markov processes in discrete and continuous time with discrete and continuous sample spaces, point processes including homogeneous and inhomogeneous Poisson processes and Markov chains on graphs, and diffusion processes including Brownian motion and the Ornstein-Uhlenbeck process. Biological topics will be determined by the interests of the students and the instructor. Likely topics include: stochastic ion channels, molecular motors and stochastic ratchets, actin and tubulin polymerization, random walk models for neural spike trains, bacterial chemotaxis, signaling and genetic regulatory networks, and stochastic predator-prey dynamics. The emphasis will be on practical simulation and analysis of stochastic phenomena in biological systems. Numerical methods will be developed using both MATLAB and the R statistical package. Student projects will comprise a major part of the course. Offered as BIOL 319, EECS 319, MATH 319, BIOL 419, EBME 419, and PHOL 419. Prereq: MATH 224 or MATH 223 and BIOL 300 or BIOL 306 and MATH 201 or MATH 307 or consent of instructor.
-
4.00 Credits
Energy bands and charge carriers in semiconductors and their experimental verifications. Excess carriers in semiconductors. Principles of operation of semiconductor devices that rely on the electrical properties of semiconductor surfaces and junctions. Development of equivalent circuit models and performance limitations of these devices. Devices covered include: junctions, bipolar transistors, Schottky junctions, MOS capacitors, junction gate and MOS field effect transistors, optical devices such as photodetectors, light-emitting diodes, solar cells and lasers. Prereq: PHYS 122. Prereq or Coreq: MATH 224.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|