|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Concepts of nanotechnology are applied in the synthesis, characterization, recognition and application of biomaterials on the nanoscale. Emphasis will be given to hands-on experience with nanostructured biomaterials; students will also be familiarized with the potential impact of these materials on different aspects of society and potential hazards associated with their preparation and application.
-
2.00 Credits
Introduction to fermentation and protein chemistry. Theory behind laboratory techniques and overview of industrial scale expression systems. Laboratory sessions involve use of microbial expression vectors, fermentation systems, and large-scale purification of recombinant protein. Half semester course, first part.
-
3.00 Credits
This lecture-based course introduces students to the quality systems used to meet the regulatory requirements for developing, testing, manufacturing, and selling medical products in the global marketplace. It provides a general background for those going into the medical products field, but is especially useful to students preparing for a career in the Regulatory Affairs or Quality Assurance Department within a pharmaceutical, biomanufacturing, or medical device company.
-
2.00 Credits
Application of microbial fermentation techniques at production scale and evaluation of the inherent issues resulting from the integration of microbial fermentation unit operations, scale-up/production, and current Good Manufacturing (cGMP) compliance. Lectures prepare students for pilot-scale laboratory experiences in media preparation, bioreactor operation, process utilities, and manufacturing quality systems that simulate microbial cell growth and product expression in a commercial cGMP facility. This is a half-semester course. Students who have completed BEC 480 may not take BEC 580 for credit.
-
2.00 Credits
In this half-semester laboratory module, students will gain practical experience with two key elements of tissue engineering: tissue building and angiogenesis. Using advanced culture techniques, students will construct a complex living tissue that closely resembles its natural counterpart, then assess its ability to support ingrowth of capillaries (angiogenesis). The effects of different biomaterials and angiogenic factors will be evaluated. The engineered tissue will be embedded, sectioned and stained for histological analysis.
-
2.00 Credits
Application of downstream bioprocessing techniques at production scale and evaluation of the inherent issues resulting from the integration of recovery and purification unit operations, scale-up/production issues, and current Good Manufacturing Practice (cGMP) compliance. Lectures prepare students for pilot-scale laboratory experiences in cell removal, cell disruption, purification, and manufacturing quality systems that simulate downstream bioprocessing in a commercial cGMP facility. This is a half-semester course. Students who have completed BEC 485 may not take BEC 585 for credit.
-
2.00 Credits
Design and operation of animal cell culture bioreactors for therapeutic protein production. Topics include: batch, fed-batch and perfusion bioreactors. agitation and aeration for mixing and oxygen mass transfer, bioreactor monitoring and control, optimizing bioreactor performance, and single-use (disposal) bioreactors. This is a half-semester course.
-
1.00 - 4.00 Credits
Offered as needed to present materials not normally available in regular course offerings or for offering of new courses on a trial basis. Departmental approval required.
-
1.00 - 3.00 Credits
Introduction to biomanufacturing research through experimental, theoretical, and literature studies. Oral and written presentation of reports. Departmental approval required.
-
2.00 Credits
This is a half-semester course. Basic microbial cell culture theory and practice: cell physiology, mass balances, and metabolic control as seen in a dynamic bioreactor process to be scalable, consistent, and robust. The lab portion of the course provides students with hands-on experience in culture techniques using bioreactors. Students who have completed MB(BEC) 520 may not take BEC (MB) 420 for credit.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|