|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
2.00 Credits
An introduction to engineering design in the context of mechanical engineering. Students learn the fundamentals of spatial reasoning and graphical representation. Freehand sketching, including pictorial and orthographic views, are applied to the designprocess. Computer modeling techniques provide accuracy, analysis, and visualization tools necessary for the design of devices and machines. Topics in detailing design for production , including fasteners, dimensioning, tolerancing, and creation of part and assembly drawings are also included.
-
2.00 Credits
An introduction to engineering design in the context of mechanical engineering. Students first complete a series of experiments that introduce physical phenomena related to mechanical engineering. Understanding is achieved by designing and building simple devices and machines. The course proceeds to a design contest in which the students design and build from a kit of parts a more significant machine that competes in a contest held at the end of the course. The course is open to all and is appropriate for anyone interested in mechanical devices, design, and the design process.
-
3.00 Credits
Prerequisites: MATH 1900 and ENGR 2310. Normal and shear stresses and strains. Stress-strain diagrams. Hooke's law and elastic energy. Thermal stresses. Stresses in beams, columns, torsional members, and pressure vessels. Elastic deflection of beams and shafts. Statically indeterminate structures. Mohr's circle of stress. Stability concepts.
-
3.00 Credits
Prerequisites: MATH 1900, CHEM 1111 and PHYSICS 2111. Classical thermodynamics, thermodynamic properties, work and heat, first and second laws. Entropy, irreversibility, availability. Application to engineering systems.
-
3.00 Credits
Prerequisite: J M ENGR 3200. Thermodynamic cycle analysis: vapor power, internal combustion, gas turbine, refrigeration. Maxwell relations and generalized property relationships for non ideal gases. Mixtures of ideal gases, psychrometrics, ideal solutions. Combustion processes, first and second law applications to reacting systems. Chemical equilibrium. Compressible flow in nozzles and diffusers.
-
4.00 Credits
Prerequisites: J M ENGR 1414, J M ENGR 1415, J M ENGR 2410, J E MATH 3170. Provides a thorough overview of the steps in the engineering design process and introduces analytical/quantitative techniques applicable to each step. Topics include recognition of need, specification formulation, concept generation, concept selection, embodiment and detail design. Includes an introduction to several classes of machine elements such as bearings, gears, belts, brakes, and springs. Underlying analytical model of the machine elements are presented along with guidelines about designing and choosing such elements for practical applications. A case study from industry will emphasize how the steps of the design process were done as well as the rationale for choosing particular machine elements.
-
3.00 Credits
Prerequisite: CHEM 1111. Same as J M ENGR 3250 but without the laboratory. Introduces the chemistry and physics of engineering materials. Emphasis on atomic and molecular interpretation of physical and chemical properties, the relationships between physical and chemical properties, and performance of an engineering material.
-
3.00 Credits
Prerequisite: J M ENGR 3250. This course deals with the application of fundamental materials science principles in various engineering disciplines. Topics covered include design of new materials having unique property combinations, selection of materials for use in specific service environments, prediction of materials performance under service conditions, and development of processes to produce materials with improved properties. The structural as well as functional use of metals, polymers, ceramics, and composites will be discussed.
-
3.00 Credits
Prerequisites: J E MATH 3170 and ENGR 2320. Fundamental concepts of fluids as continua. Viscosity. Flow field: velocity, vorticity, streamlines. Fluid statics: hydrostatic forces manometers. Conservation of mass and momentum. Incompressible inviscid flow. Dimensional analysis and similitude. Flow in pipes and ducts. Flow measurement. Boundary-layer concepts. Flow in open channels.
-
3.00 Credits
Prerequisites: J M ENGR 3200, J M ENGR 3700 and J E MATH 3170. Introductory treatment of the principles of heat transfer by conduction, convection, or radiation. Mathematical analysis of steady and unsteady conduction along with numerical methods. Analytical and semiempirical methods of forced and natural convection systems. heat exchangers: LMTD and e-NTU analysis. Boiling and condensation heat transfer. Radiation between blackbody and real surfaces. Radiation network analysis.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|