|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Prerequisite: J E ENGR 2320. Design and characterization of digital circuits, reliable and predictable interconnection of digital devices, and information transfer over busses and other connections. Topics include: Review of MOSFET operation; CMOS logic gate electrical characteristics; System and single-point noise margin and noise budgets; Figures of merit for noise-margin and poser-delay product, and tradeoff between noise margin and propagation delay; Transmission-line driving including reflection, termination, non-zero transition time; lumped and distributed capacitance loads, non-linear terminations, and applicable conditions for lumped approximations; Coupled transmission lines, forward and backward crosstalk, short line approximations, ground bounce, and simultaneous switching noise; Timing, clocking, and clock distribution for digital circuits; Prediction of metastability error rates and design for acceptable probability of failure. Examples and design exercises using systems and interconnections selected from current Computer Engineering practice such as RAMBUS, PCI bus, GTL, LVDS, and others.
-
3.00 Credits
Prerequisites: J E ENGR 2600, J E ENGR 2320 Procedure for reliable digital design, both combinational and sequential; understanding manufacturers' specifications; use of special test equipment; characteristics of common SSI, MSI, and LSI devices; assembling, testing, and simulating design; construction procedures; maintaining signal integrity. Several single-period laboratory exercises, several design projects, and application of a microprocessor in digital design. Microprocessor programs are written in assembly language on a host computer and down loaded to the laboratory station for debugging. One lecture and one laboratory period a week.
-
3.00 Credits
Prerequisites: J E ENGR 3510 and J E MATH 3260. Introduction to the concepts of transmission of information via communication channels. Amplitude and angle modulation for the transmission of continuous-time signals. Analog-to-digital conversion and pulse code modulation. Transmission of digital data. Introduction to random signals and noise and their effects on communication. Optimum detection systems in the presence of noise. Elementary information theory. Overview of various communication technologies such as radio, television, telephone networks, data communication, satellites, optical fiber, and cellular radio.
-
3.00 Credits
Prerequisites: Senior Standing. This course will introduce and cover the architecture, protocols, security, and quality of service (QoS) of Internet Communications. Starting with the design principles and architecture of the Internet, communication applications such as Voice over IP (VoIP), video conferencing, and presence and instant messaging will be covered. Protocols developed by the Internet Engineering Task Force (IETF) including IP, TCP, UDP, DNS, SIP, XMPP, and ENUM will be studied. Latest areas of research including the Service Oriented Architecture (SOA) and peer-to-peer (P2P) architectures for Internet Communications will be covered.
-
3.00 Credits
Prerequisite: J E ENGR 3510. Introduction to analysis and synthesis of discrete-time linear time-invariant (LTI) systems. Discrete-time convolution, discrete-time Fourier transform, Z-transform, rational function descriptions of discrete-time LTI systems. Sampling, analog-to-digital conversion and digital processing of analog signals. Techniques for the design of finite impulse response (FIR) and infinite impulse response (IIR) digital filters. Hardware implementation of digital filters and finite-register effects. The discrete Fourier transform and the fast Fourier transform (FFT) algorithm.
-
3.00 Credits
Prerequisites: J E ENGR 3510. A laboratory course designed to complement the traditional EE course offerings in signal processing, communication theory, and automatic control. Signals and systems fundamentals: continuous-time and discrete-time linear time-invariant systems, impulse and step response, frequency response, A/D and D/A conversion. Digital signal processing: FIR and IIR digital filter design, implementation and application of the Fast Fourier Transform. Communication theory: baseband, digital communication, amplitude modulation, frequency modulation, bandpass digital communication. Automatic control: system modeling, feedback control systems, closed-loop transient and frequency response. Laboratory experiments involve analog and digital electronics, and mechanical systems. Computer workstations and modern computational software used extensively for system simulation, real-time signal processing, and discrete-time automatic control.
-
3.00 Credits
Prerequisite: Senior standing. Working in teams, students address design tasks assigned by faculty. Each student participates in one or more design projects in a semester. Projects are chosen to emphasize the design process, with the designer choosing one of several paths to a possible result. Collaboration with industry and all divisions of the university is encouraged.
-
4.00 Credits
Prerequisite: MATH 2020. The Laplace transform and applications; series solutions of differential equations, Bessel's equation, Legendre's equation, special functions; matrices, eigenvalues, and eigenfunctions; vector analysis and applications; boundary value problems and spectral representation; Fourier series and Fourier integrals; solution of partial differential equations of mathematical physics.
-
3.00 Credits
Prerequisite: MATH 2000. Study of probability and statistics together with engineering applications. Probability and statistics: random variables, distribution functions, density functions, expectations, means, variances, combinatorial probability, geometric probability, normal random variables, joint distribution, independence, correlation, conditional probability, Bayes theorem, the law of large numbers, the central limit theorem. Applications: reliability, quality control, acceptance sampling, linear regression, design and analysis of experiments, estimation, hypothesis testing. Examples are taken from engineering applications. This course is required for electrical and mechanical engineering majors.
-
4.00 Credits
Prerequisite: CHEM 1111. Introduces the chemistry and physics of engineering materials. Emphasis on atomic and molecular interpretation of physical and chemical properties, the relationships between physical and chemical properties, and performance of an engineering material.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|