|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
1.00 Credits
This course is aimed at the acquisition of MATLAB skills through hands on familiarization and practice. Students practice the array, vector, and mesh grid representations, use programming and plotting, and apply these skills to solve numerical problems and generate reports. (J CMP SC 1002 and CMP SCI 1250 can substitute for J CMP SC 1360)
-
3.00 Credits
Prerequisites: ENGL 1100 and junior standing. Persistent concerns of grammar and style. Analysis and discussion of clear sentence and paragraph structure and of organization in complete technical documents. Guidelines for effective layout and graphics. Examples and exercises stressing audience analysis, graphic aids, editing, and readability. Videotaped work in oral presentation of technical projects. Writing assignments include descriptions of mechanisms, process instructions, basic proposals, letters and memos, and a long formal report.
-
3.00 Credits
Prerequisites: PHYSICS 2112 and MATH 2020 (may be taken concurrently). Elements, sources, and interconnects. Ohm's and Kirchhoff's laws, superposition and Thevenin's theorem; the resistive circuit, transient analysis, sinusoidal analysis, and frequency response.
-
3.00 Credits
Prerequisite: J E ENGR 2300. Introduction to contemporary electronic devices and their circuit applications. Terminal characteristics of active semiconductor devices. Incremental and D-C models of junction diodes, bipolar transistor (BJTs), and metal-oxide semiconductor field effect transistors (MOSFETs) are developed and used to design single- and multi-stage amplifiers. Models of the BJT and MOSFET in cutoff and saturation regions are used to design digital circuits.
-
3.00 Credits
Prerequisite: J E ENGR 2300. Lectures and laboratory exercises related to sophomore topics in introductory networks and basic electronics.
-
3.00 Credits
Prerequisite: J CMP SC 1260. Digital computers and digital information-processing system; Boolean algebra, principles and methodology of logical design; machine language programming; register transfer logic; microprocessor hardware, software, and interfacing; fundamentals of digital circuits and systems; computer organization and control; memory systems; arithmetic unit design. Occasional laboratory exercises.
-
3.00 Credits
Electromagnetic theory as applied to electrical engineering: vector calculus; electrostatics and magnetostatics; Maxwell's equations, including Poynting's theorem and boundary conditions; uniform plane-wave propagation; transmission lines - TEM modes, including treatment of general, lossless line, and pulse propagation; introduction to guided waves; introduction to radiation and scattering concepts
-
3.00 Credits
Prerequisite: J E ENGR 2300. Fundamental concepts of power and energy; electrical measurements; physical and electrical arrangement of electrical power systems; polyphase circuit theory and calculations; principle elements of electrical systems such as transformers, rotating machines, control, and protective devices, their description and characteristics; elements of industrial power system design.
-
3.00 Credits
Prerequisite: PHYSICS 2112. Introduction to the solid-state physics of electronic materials and devices, including semiconductors, metals, insulators, diodes and transistors. Crystal growth technology and fundamental properties of crystals. Electronic properties and band structure of electronic materials, and electron transport in semiconductor materials. Fabrication of pn junction diodes, metal-semiconductor junctions, and transistors and integrated-circuit chips. Fundamental electrical properties of rectifying diodes and light-emitting diodes, bipolar transistors and field-effect transistors. Device physics of diodes and transistors, large-signal electrical behavior and high -frequency properties.
-
3.00 Credits
Prerequisite: J E ENGR 2320. Introduction to semiconductor electronic devices: transistors and diodes. Device electrical DC and high-frequency characteristics. Bipolar transistors, field-effect transistors, and MOS transistors for analog electronics applications. Transistor fabrication as discrete devices and as integrated-circuit chips. Large-signal analysis of transistor amplifiers: voltage gain, distortion, input resistance and output resistance. Analysis of multitransistor amplifiers: Darlington, Cascode, and coupled-pair configurations. Half-circuit concepts, differential-mode gain, common-mode gain, and differential-to-single-ended conversion. Transistor current sources, active loads, and power-amplifier stages. Applications to operational amplifiers and feedback circuits.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|