|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
1.25 Credits
Starting with the fundamental theorem of calculus and related techniques, the integral of functions of a single variable is developed and applied to problems in geometry, probability, physics, and differential equations. Polynomial approximations, Taylor series, and their applications conclude the course. Students cannot receive credit for this course and course 19B, or Applied Mathematics and Statistics 11B, or Economics 11B. Prerequisite(s): course 11A or AP Calculus AB exam score of 4 or 5, or BC exam score of 3 or higher, or IB Mathematics Higher Level exam score of 5 or higher. (General Education Code(s): IN, Q.) The Staff
-
1.25 Credits
An introduction to mathematical theory of coding. Construction and properties of various codes, such as cyclic, quadratic residue, linear, Hamming, and Golay codes; weight enumerators; connections with modern algebra and combinatorics. Prerequisite(s): course 21. The Staff
-
1.25 Credits
Topics include Euclidean space, tangent vectors, directional derivatives, curves and differential forms in space, mappings. Curves, the Frenet formulas, covariant derivatives, frame fields, the structural equations. The classification of space curves up to rigid motions. Vector fields and differentiable forms on surfaces; the shape operator. Gaussian and mean curvature. The theorem Egregium; global classification of surfaces in three space by curvature. Prerequisite(s): courses 21 and 23B and either course 100 or Computer Science 101. Course 105A strongly recommended. The Staff
-
1.25 Credits
Examples of surfaces of constant curvature, surfaces of revolutions, minimal surfaces. Abstract manifolds; integration theory; Riemannian manifolds. Total curvature and geodesics; the Euler characteristic, the Gauss-Bonnet theorem. Length-minimizing properties of geodesics, complete surfaces, curvature and conjugate points cover- ing surfaces. Surfaces of constant curvature; the theorems of Bonnet and Hadamard. Prerequisite(s): course 121A. The Staff
-
1.25 Credits
Topics include introduction to point set topology (to-pological spaces, continuous maps, connectedness, compactness), homotopy relation, definition and calculation of fundamental groups and homology groups, Euler characteristic, classification of orientable and nonorient-able surfaces, degree of maps, and Lefschetz fixed-point theorem. Prerequisite(s): course 100; course 111A recommended. The Staff
-
1.25 Credits
Rigorous foundations for Euclidean and non-Euclidean geometries. History of attempts to prove the parallel postulate and of the simultaneous discovery by Gauss, J. Bolyai, and Lobachevsky of hyperbolic geometry. Consistency proved by Euclidean models. Classification of rigid motions in both geometries. Prerequisite(s): either course 100 or Computer Science 101. The Staff
-
1.25 Credits
Theorems of Desargue, Pascal, and Pappus; projectivities; homogeneous and affine coordinates; conics; relation to perspective drawing and some history. Prerequisite(s): course 21. The Staff
-
1.25 Credits
Solves the two-body (or Kepler) problem, then moves onto the N-body problem where there are many open problems. Includes central force laws; orbital elements; conservation of linear momentum, energy, and angular momentum; the Lagrange-Jacobi formula; Sundman's theorem for total collision; virial theorem; the three-body problem; Jacobi coordinates; solutions of Euler and of Lagrange; and restricted three-body problem. Prerequisite(s): courses 19A-B and course 23A or Physics 5A or 6A; courses 21 and 24 strongly recommended. Enrollment limited to 35. The Staff
-
1.25 Credits
Introduces different methods in cryptography (shift cipher, affine cipher, Vigenere cipher, Hill cipher, RSA cipher, ElGamal cipher, knapsack cipher). The necessary material from number theory and probability theory is developed in the course. Common methods to attack ciphers discussed. Prerequisite(s): course 100; course 110 recommended as preparation. The Staff
-
1.25 Credits
Introduction to mathematical modeling of industrial problems. Problems in air quality remediation, image capture and reproduction, and crystallization are modeled as ordinary and partial differential equations then analyzed using a combination of qualitative and quantitative methods. Prerequisite(s): course 24 and either course 100 or Computer Science 101, and course 105A. The Staff
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|