|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
4.00 Credits
Pr., MATH 1620. A continuation of MATH 1620 Calculus II. Vectors and curvilinear motion; partial derivatives; gradient and its applications; multivariable Chain Rule; maxima and minima, including Lagrange multipliers; double and triple integration; line integrals; Green's Theorem; surface integrals; Divergence Theorem; Stokes' Theorem.
-
3.00 Credits
Pr., MATH 1620. Algebra of Matrices, systems of linear equations, vector spaces, subspaces, bases, coordinatization, linear transformations and their matrix representations, determinants, eigen- values and diagonalization.
-
3.00 Credits
Pr., MATH 1100. Fundamentals of applied statistics: hypothesis testing, confidence intervals, correlation, regression, goodness of fit, analysis of variance and nonparametric statistics. A maximum of 3 hours' of credit for QMTH 2740, MATH 2670 and MATH 2680 may be applied to graduation requirements.
-
3.00 Credits
Pr., MATH 1620. First-order dif- ferential equations, higher-order, linear differential equations, including infinite series solutions, Laplace transforms, systems of linear differential equations and applications.
-
3.00 Credits
Pr., MATH 2670. Correlation and regression, analysis of variance, nonparametric methods, multivariate analysis. Emphasis on applications. Includes introduction to statistical computing using SAS. Duplicate credit not allowed for MATH 3670 and QMTH 2750.
-
3.00 Credits
Pr., MATH 1620. A first course beginning with Babylonian and Egyptian mathematics, including the contributions of the Greeks and the development of elementary mathematics through calculus.
-
3.00 Credits
Coreq., MATH 2660 or permission of instructor. Combinatorial reasoning and problem solving, including graph theory, counting principles, permutations and combinations and combinatorial modeling.
-
3.00 Credits
Pr., MATH 2660. The Least Upper Bound axion and order properties of the real line, sequences, series, continuous functions, fixed point theory. Emphasis on the development of proofs by students.
-
3.00 Credits
Pr., MATH 4210. A continuation of MATH 4210. Limits, derivatives, theory of the Riemann integral, sequences of functions, uniform convergence and power series. Emphasis on the development of proofs by students.
-
3.00 Credits
Pr., MATH 2630. Complex numbers, limits, dif- ferentiation, analytic functions, integration, conformal mappings and applications.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|