|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
4.00 Credits
Seminar, four hours; outside study, eight hours. Designed for undergraduate students who are part of research group. Discussion of research methods and current literature in field. May be repeated for credit. Letter grading.
-
3.00 Credits
Tutorial, to be arranged. Limited to juniors/seniors. Supervised individual research or investigation under guidance of faculty mentor. Culminating paper or project required. May be repeated for credit with school approval. Individual contract required; enrollment petitions available in Office of Academic and Student Affairs. Letter grading.
-
4.00 Credits
(Same as Computer Science M151B.) Lecture, four hours; discussion, two hours; outside study, six hours. Requisites: course M16 or Computer Science M51A, Computer Science 33. Recommended: course M116L or Computer Science M152A, Computer Science 111. Computer system organization and design, implementation of CPU datapath and control, instruction set design, memory hierarchy (caches, main memory, virtual memory) organization and management, input/output subsystems (bus structures, interrupts, DMA), performance evaluation, pipelined processors. Letter grading.
-
2.00 Credits
Laboratory, four hours; outside study, two hours. Requisite: course M16 or Computer Science M51A. Hands-on design, implementation, and debugging of digital logic circuits, use of computer-aided design tools for schematic capture and simulation, implementation of complex circuits using programmed array logic, design projects. Letter grading.
-
6.00 Credits
(Same as Computer Science M117.) Lecture, four hours; discussion, four hours; outside study, 10 hours. Not open to students with credit for course M171L. Introduction to fundamental data communication concepts underlying and supporting modern networks, with focus on physical and media access layers of network protocol stack. Systems include high-speed LANs (e.g., fast and giga Ethernet), optical DWDM (dense wavelength division multiplexing), time division SONET networks, wireless LANs (IEEE802.11), and ad hoc wireless and personal area networks (e.g., Bluetooth). Experimental laboratory sessions included. Letter grading.
-
4.00 Credits
Lecture, four hours; discussion, two hours; outside study, six hours. Introduction to digital systems. Specification and implementation of combinational and sequential systems. Standard logic modules and programmable logic arrays. Specification and implementation of algorithmic systems: data and control sections. Number systems and arithmetic algorithms. Error control codes for digital information. Letter grading.
-
4.00 - 8.00 Credits
Laboratory, four to eight hours; outside study, two to four hours. Recommended preparation: course M116L. Limited to seniors. Interpretation of analog signaling aspects of digital systems and data communications through experience in using contemporary test instruments to generate and display signals in relevant laboratory setups. Use of oscilloscopes, pulse and function generators, baseband spectrum analyzers, desktop computers, terminals, modems, PCs, and workstations in experiments on pulse transmission impairments, waveforms and their spectra, modem and terminal characteristics, and interfaces. Letter grading.
-
4.00 Credits
(Same as Physics M122.) Lecture, three hours. Requisite: course 101 or Physics 110A. Senior-level introductory course on electrodynamics of ionized gases and applications to materials processing, generation of coherent radiation and particle beams, and renewable energy sources. Letter grading.
-
4.00 Credits
Lecture, four hours; outside study, eight hours. Requisites: course M101, Life Sciences 3. Introduction to current progress in engineering to integrate biosciences and nanosciences into synthetic systems, where biological components are reengineered and rewired to perform desirable functions in both intracellular and cell-free environments. Discussion of basic technologies and systems analysis that deal with dynamic behavior, noise, and uncertainties. Design project in which students are challenged to design novel biosystems and nanosystems for nontrivial task required. Letter grading.
-
4.00 Credits
Lecture, four hours; discussion, two hours; outside study, six hours. Recommended requisite: course M101. Introduction to potential implications of nanotechnology to environmental systems as well as potential application of nanotechnology to environmental protection. Technical contents include three multidisciplinary areas: (1) physical, chemical, and biological properties of nanomaterials, (2) transport, reactivity, and toxicity of nanoscale materials in natural environmental systems, and (3) use of nanotechnology for energy and water production, plus environmental protection, monitoring, and remediation. Letter grading.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|