|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
As the mathematical maturity of the students will allow, selected topics will be examined such as the generalized expressions for forces and potentials, vector analysis, applications of Fourier series and complex variables, and solutions of the harmonic oscillator and wave equations. Three lecture hours. Prerequisites: PHYS 212 or PHYS 242; MATH 274.
-
4.00 Credits
Special relativity, the quantum theory, atomic structure and spectra, and nuclear structure and reactions are the main topics covered by the course. Other topics that may be covered involve molecular, solid state, and high energy physics. Four lecture hours. Prerequisites: MATH 274; PHYS 212 or PHYS 242.
-
4.00 Credits
Circuit components, characteristics of semiconductors, electrical measurements, method of circuit analysis, electronic devices. Three lecture hours and one three-hour laboratory. Prerequisite: PHYS 212 or PHYS 222 or consent of instructor.
-
4.00 Credits
Subjects covered will be basic concepts of digital electronics such as: gates, logic modules, truth tables, digital codes, sequential systems, semiconductor memories, decade counters, etc. The laboratory program is designed to give students firsthand experience on the material covered in lecture using integrated circuits and LED display systems. Two hours lecture and three hours laboratory. Prerequisite: MATH 115 or equivalent.
-
3.00 Credits
Principles of transistors with emphasis on their design and construction and an introduction to logic circuits. Two lecture hours and one two-hour laboratory. Prerequisites: PHYS 305 and PHYS 335.
-
3.00 Credits
Introductory course on basic microcomputer concepts. Topics covered include basic structure and organization of microcomputers, digital logic design, assembly language programming, memory elements and applications. Hardware-oriented experiments will be conducted providing practical experience in interfacing the microcomputer to a variety of instruments and input-output devices. Two hours lecture and two hours laboratory. Prerequisite: PHYS 337.
-
3.00 Credits
First semester: the measurement of several fundamental physical constants. Exploration of classical and modern research methods: lasers, holography, optical and nuclear spectroscopy. Second semester: several advanced experiments and a research project. Familiarization with machine shop procedure, vacuum and other experimental techniques. Five laboratory hours. Prerequisite: PHYS 311 or concurrently. (Lab II Prerequisite: PHYS 341.)
-
3.00 Credits
First semester: the measurement of several fundamental physical constants. Exploration of classical and modern research methods: lasers, holography, optical and nuclear spectroscopy. Second semester: several advanced experiments and a research project. Familiarization with machine shop procedure, vacuum and other experimental techniques. Five laboratory hours. Prerequisite: PHYS 311 or concurrently. (Lab II Prerequisite: PHYS 341.)
-
4.00 Credits
Systems of coordinates, kinematics and transformations; newtonial dynamics of particles; linear systems, oscillations and series techniques; calculus of variations and the Lagrangian and Hamiltonian formulations; application of Lagrangians to gravitation/central force motion. Optional; nonlinear oscillations. Prerequisite: PHYS 242, PHYS 307 or consent of instructor.
-
3.00 Credits
Continuation of PHYS 351. Rotation transformations; perturbation and Green's function techniques in solution of oscillating systems; collisions; rotating frames of reference and dynamics of rigid bodies (including Euler's angles, precession, notation); theory of coupled small oscillations. Optional; special relativity; continuum mechanics. Prerequisite: PHYS 351.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|