|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Applications of thermodynamics in extractive and physical metallurgy and materials science. Thermodynamics of solutions including solution models, calculation of activities from phase diagrams, and measurements of thermodynamic properties of alloys and slags. Reaction equilibria with examples in alloy systems and slags. Phase stability analysis. Thermodynamic principles of phase Colorado School of Mines Undergraduate Bulletin 2008-2009 121 122 Colorado School of Mines Undergraduate Bulletin 2008-2009 diagrams in material systems, defect equilibrium and interactions. Prerequisite: DCGN209. 4 hours lecture; 4 semester hours.
-
3.00 Credits
Introduction to reaction kinetics: chemical kinetics, atomic and molecular diffusion, surface thermodynamics and kinetics of interfaces and nucleation-and-growth. Applications to materials processing and performance aspects associated with gas/solid reactions, precipitation and dissolution behavior, oxidation and corrosion, purification of semiconductors, carburizing of steel, formation of p-n junctions and other important materials systems. Prerequisite: MTGN351. 3 hours lecture; 3 semester hours.
-
3.00 Credits
Review of the concepts of chemical equilibrium and derivation of the Gibbs Phase Rule. Application of the Gibbs Phase Rule to interpreting one, two and three component Phase Equilibrium Diagrams. Application to alloy and ceramic materials systems. Emphasis on the evolution of phases and their amounts and the resulting microstructural development. Prerequisite/ Co-requisite: MTGN351. 2 hours lecture; 2 semester hours.
-
3.00 Credits
Engineering materials and the manufacturing processes used in their conversion into a product or structure as critical considerations in design. Properties, characteristics, typical selection criteria, and applications are reviewed for ferrous and nonferrous metals, plastics and composites. Characteristics, features, and economics of basic shaping operations are addressed with regard to their limitations and applications and the types of processing equipment available. Related technology such as measurement and inspection procedures, numerical control systems and automated operations are introduced concomitantly. Prerequisite: EGGN320 and SYGN202 or Consent of Instructor. 3 hours lecture; 3 semester hours.
-
3.00 Credits
Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). The course topic is generally offered only once. Prerequisite: Consent of Instructor. 1 to 3 semester hours. Repeatable for credit under different titles.
-
3.00 Credits
Independent work leading to a comprehensive report. This work may take the form of conferences, library, and laboratory work. Choice of problem is arranged between student and a specific Department faculty-member. Prerequisite: Selection of topic with consent of faculty supervisor; "Independent Study Form"must be completed and submitted to Registrar. 1 to 3 semester hours. Repeatable for credit.
-
3.00 Credits
Two semester individual research under the direction of members of the Metallurgical and Materials Engineering faculty. Work may include library and laboratory research on topics of relevance. Oral presentation will be given at the end of the second semester and written thesis submitted to the committee for evaluation. Prerequisites: Senior standing in the Department of Metallurgical and Materials Engineering and Consent of Department Head. 3 hours per semester. Repeatable for credit to a maximum of 6 hours.
-
3.00 Credits
Application of engineering principles to nonmetallic and ceramic materials. Processing of raw materials and production of ceramic bodies, glazes, glasses, enamels, and cements. Firing processes and reactions in glass bonded as well as mechanically bonded systems. Prerequisite: MTGN348. 3 hours lecture; 3 semester hours.
-
3.00 Credits
Principles of ceramic processing and the relationship between processing and microstructure. Raw materials and raw materials preparation, forming and fabrication, thermal processing, and finishing of ceramic materials will be covered. Principles will be illustrated by case studies on specific ceramic materials. A project to design a ceramic fabrication process is required. Field trips to local ceramic manufacturing operations. Prerequisite: MTGN31 or consent of the instructor. 3 hours lecture; 3 semester hours.
-
3.00 Credits
Survey of the electrical properties of materials, and the applications of materials as electrical circuit components. The effects of chemistry, processing and microstructure on the electrical properties. Functions, performance requirements and testing methods of materials for each type of circuit component. General topics covered are conductors, resistors, insulators, capacitors, energy converters, magnetic materials and integrated circuits. Prerequisites: PHGN200, MTGN311 or MLGN501, or consent of instructor. 3 hours lecture; 3 semester hours.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|