Course Criteria

Add courses to your favorites to save, share, and find your best transfer school.
  • 3.00 Credits

    Modern tunneling techniques. Emphasis on evaluation of ground conditions, estimation of support requirements, methods of tunnel driving and boring, design systems and equipment, and safety. Prerequisite: None. 3 hours lecture; 3 semester hours.
  • 3.00 Credits

    The course deals with the rock mechanics aspect of design of mine layouts developed in both underground and surface. Underground mining sections includes design of coal and hard rock pillars, mine layout design for tabular and massive ore bodies, assessment of caving characteristics of ore bodies, performance and application of backfill, and phenomenon of rock burst and its alleviation. Surface mining portion covers rock mass characterization, failure modes of slopes excavated in rock masses, probabilistic and deterministic approaches to design of slopes, and remedial measures for slope stability problems. Prerequisite: MNGN321 or equivalent. 3 hours lecture; 3 semester hours.
  • 3.00 Credits

    Design of underground excavations and support. Analysis of stress and rock mass deformations around excavations using analytical and numerical methods. Collections, preparation, and evaluation of in situ and laboratory data for excavation design. Use of rock mass rating systems for site characterization and excavation design. Study of Colorado School of Mines Undergraduate Bulletin 2008-2009 129 support types and selection of support for underground excavations. Use of numerical models for design of shafts, tunnels and large chambers. Prerequisite: Instructor's consent. 3 hours lecture; 3 semester hours. Offered in odd years.
  • 3.00 Credits

    Theory and application of rock drilling, rock boring, explosives, blasting, and mechanical rock breakage. Design of blasting rounds, applications to surface and underground excavation. Prerequisite: DCGN241 concurrent enrollment or instructors consent. 3 hours lecture; 3 semester hours.
  • 3.00 Credits

    Soil and rock engineering applied to underground civil works. Tunneling and the construction of underground openings for power facilities, water conveyance, transportation, and waste disposal; design, excavation and support of underground openings. Emphasis on consulting practice, case studies, geotechnical design, and construction methods. Prerequisite: EGGN361 OR MNGN321, or Instructor's consent. 2 hours of lecture; 2 semester hours.
  • 3.00 Credits

    Successful implementation and management of surface and underground construction projects, preparation of contract documents, project bidding and estimating, contract awarding and notice to proceed, value engineering, risk management, construction management and dispute resolution, evaluation of differing site conditions claims. Prerequisite: MNGN 210 or Instructor's consent, 2-hour lecture, 2 semester hours.
  • 3.00 Credits

    Analysis of mine plant elements with emphasis on design. Materials handling, dewatering, hoisting, belt conveyor and other material handling systems for underground mines. Prerequisite: MNGN312, MNGN314 or Instructor's consent. 2 hours lecture, 3 hours lab; 3 semester hour.
  • 3.00 Credits

    Analytical and numerical modeling analysis of stresses and displacements induced around engineering excavations in rock. In-situ stress. Rock failure criteria. Complete load deformation behavior of rocks. Measurement and monitoring techniques in rock mechanics. Principles of design of excavation in rocks. Analytical, numerical modeling and empirical design methods. Probabilistic and deterministic approaches to rock engineering designs. Excavation design examples for shafts, tunnels, large chambers and mine pillars. Seismic loading of structures in rock. Phenomenon of rock burst and its alleviation. Prerequisite: MNGN321 or Instructor's consent. 3 hours lecture; 3 semester hours.
  • 3.00 Credits

    Design of underground openings in competent and broken ground using rock mechanics principles. Rock bolting design and other ground support methods. Coal, evaporite, metallic and nonmetallic deposits included. Prerequisite: MNGN321, concurrent enrollment or Instructor's consent. 3 hours lecture; 3 semester hours.
  • 3.00 Credits

    Science and engineering governing the practice of mineral concentration by flotation. Interfacial phenomena, flotation reagents, mineral-reagent interactions, and zeta-potential are covered. Flotation circuit design and evaluation as well as tailings handling are also covered. The course also includes laboratory demonstrations of some fundamental concepts. 3 hours lecture; 3 semester hours.
To find college, community college and university courses by keyword, enter some or all of the following, then select the Search button.
(Type the name of a College, University, Exam, or Corporation)
(For example: Accounting, Psychology)
(For example: ACCT 101, where Course Prefix is ACCT, and Course Number is 101)
(For example: Introduction To Accounting)
(For example: Sine waves, Hemingway, or Impressionism)
Distance:
of
(For example: Find all institutions within 5 miles of the selected Zip Code)
Privacy Statement   |   Terms of Use   |   Institutional Membership Information   |   About AcademyOne   
Copyright 2006 - 2024 AcademyOne, Inc.