|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Application of engineering principles to nonmetallic and ceramic materials. Processing of raw materials and production of ceramic bodies, glazes, glasses, enamels, and cements. Firing processes and reactions in glass bonded as well as mechanically bonded systems. Prerequisite: MTGN348. 3 hours lecture; 3 semester hours.
-
3.00 Credits
Survey of the electrical properties of materials, and the applications of materials as electrical circuit components. The effects of chemistry, processing, and microstructure on the electrical properties will be discussed, along with functions, performance requirements, and testing methods of materials for each type of circuit component. The general topics covered are conductors, resistors, insulators, capacitors, energy convertors, magnetic materials, and integrated circuits. Prerequisites: PHGN200; MTGN311 or MLGN501; MTGN412/MLGN512, or consent of instructor. 3 hours lecture; 3 semester hours.
-
3.00 Credits
A survey of the properties of ceramic materials and how these properties are determined by the chemical structure (composition), crystal structure, and the microstructure of crystalline ceramics and glasses. Thermal, optical, and mechanical properties of single-phase and multi-phase ceramics, including composites, are covered. Prerequisites: PHGN200, MTGN311 or MLGN501, MTGN412 or consent of instructor. 3 semester hours: 3 hours lecture.
-
3.00 Credits
Review mechanics of materials. Introduction to elastic and non-linear continua. Cartesian tensors and stresses and strains. Analytical solution of elasticity problems. Develop basic concepts of fracture mechanics. Prerequisite: EGGN320 or equivalent, MATH225 or equivalent. 3 hours lecture; 3 semester hours.
-
3.00 Credits
An introduction to the principles of glass science and engineering and non-crystalline materials in general. Glass formation, structure, crystallization and properties will be covered, along with a survey of commercial glass compositions, manufacturing processes and applications. Prerequisites: MTGN311 or MLGN501; MLGN512/MTGN412, or consent of instructor. 3 hours lecture; 3 semester hours.
-
3.00 Credits
Continuation of MLGN502/ PHGN440 with an emphasis on applications of the principles of solid state physics to practical properties of materials including: optical properties, superconductivity, dielectric properties, magnetism, noncrystalline structure, and interfaces. Graduate students in physics cannot receive credit for MLGN522, only PHGN441. Prerequisite: MLGN502/ PHGN440. 3 hours lecture, 3 semester hours. *Those receiving graduate credit will be required to submit a term paper, in addition to satisfying all of the other requirements of the course.
-
3.00 Credits
Chemistry and thermodynamics of polymers and polymer solutions. Reaction engineering of polymerization. Characterization techniques based on solution properties. Materials science of polymers in varying physical states. Processing operations for polymeric materials and use in separations. Prerequisite: CHGN221, MATH225, CHEN357 or consent of instructor. 3 hour lecture, 3 semester hours.
-
3.00 Credits
This class provides a background in polymer fluid mechanics, polymer rheological response and polymer shape forming. The class begins with a discussion of the definition and measurement of material properties. Interrelationships among the material response functions are elucidated and relevant correlations between experimental data and material response in real flow situations are given. Processing operations for polymeric materials will then be addressed. These include the flow of polymers through circular, slit, and complex dies. Fiber spinning, film blowing, extrusion and co-extrusion will be covered as will injection molding. Graduate students are required to write a term paper and take separate examinations which are at a more advanced level. Prerequisite: CRGN307, EGGN351 or equivalent. 3 hours lecture; 3 semester hours. MLGN535, PHGN435/535, and ChEN 435/535. INTERDISCIPLINARY
-
3.00 Credits
Solution and surface chemistry of importance in mineral and metallurgical operations. Prerequisite: Consent of department. 3 semester hours. (Fall of even years only.)
-
3.00 Credits
A description of the principles of ceramic processing and the relationship between processing and microstructure. Raw materials and raw material preparation, forming and fabrication, thermal processing, and finishing of ceramic materials will be covered. Principles will be illustrated by case studies on specific ceramic materials. A project to design a ceramic fabrication process is required. Field trips to local ceramic manufacturing operations are included. Prerequisites: MTGN311, MTGN331, and MTGN412/MLGN512 or consent of instructor. 3 hours lecture; 3 semester hours.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|