|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Theory of groundwater occurrence and flow. Relation of groundwater to surface; potential distribution and flow; theory of aquifer tests; water chemistry, water quality, and contaminant transport. Prerequisite: mathematics through calculus and MATH225, GEOL309, GEOL315, and EGGN351, or consent of instructor. 3 hours lecture, 3 semester hours.
-
3.00 Credits
Theory of groundwater occurrence and flow. Relation of groundwater to surface water; potential distribution and flow; theory of aquifer tests; water chemistry, water quality, and contaminant transport. Laboratory sessions on water budgets, water chemistry, properties of porous media, solutions to hydraulic flow problems, analytical and digital models, and hydrogeologic interpretation. Prerequisite: mathematics through calculus and MATH225, GEOL309, GEOL314 or GEOL315, and EGGN351, or consent of instructor. 3 hours lecture, 3 hours lab; 4 semester hours.
-
3.00 Credits
Application of geology to evaluation of construction, mining, and environmental projects such as dams, waterways, tunnels, highways, bridges, buildings, mine design, and land-based waste disposal facilities. Design projects including field, laboratory, and computer analysis are an important part of the course. Prerequisite: MNGN321 and concurrent enrollment in EGGN361/EGGN363 or consent of instructor. 3 hours lecture, 3 hours lab, 4 semester hours.
-
3.00 Credits
This is a capstone design course that emphasizes realistic engineering geologic/geotechnics projects. Lecture time is used to introduce projects and discussions of methods and procedures for project work. Several major projects will be assigned and one to two field trips will be required. Students work as individual investigators and in teams. Final written design reports and oral presentations are required. Prerequisite: GEGN468 or equivalent and EPIC251. 2 hours lecture, 3 hours lab; 3 semester hours.
-
3.00 Credits
Application of the principles of hydrogeology and ground-water engineering to water supply, geotechnical, or water quality problems involving the design of well fields, drilling programs, and/or pump tests. Engineering reports, complete with specifications, analysis, and results, will be required. Prerequisite: GEGN467 or equivalent or consent of instructor and EPIC251. 2 hours lecture, 3 hours lab; 3 semester hours.
-
3.00 Credits
Methods of field investigation, testing, and monitoring for geotechnical and hazardous waste sites, including: drilling and sampling methods, sample logging, field testing methods, instrumentation, trench logging, foundation inspection, engineering stratigraphic column and engineering soils map construction. Projects will include technical writing for investigations (reports, memos, proposals, workplans). Class will culminate in practice conducting simulated investigations (using a computer simulator). 3 hours lecture; 3 semester hours.
-
3.00 Credits
An introduction to Geographic Information Systems (GIS) and their applications to all areas of geology and geological engineering. Lecture topics include: principles of GIS, data structures, digital elevation models, data input and verification, data analysis and spatial modeling, data quality and error propagation, methods of GIS projects, as well as video presentations. Prerequisite: SYGN101. 2 hours lecture, 3 hours lab; 3 semester hours.
-
3.00 Credits
Conceptual overview and hands-on experience with a commercial desktop mapping system. Display, analysis, and presentation mapping functions; familiarity with the software components, including graphical user interface (GUI); methods for handling different kinds of information; organization and storage of project documents. Use of raster and vector data in an integrated environment; basic raster concepts; introduction to GIS models, such as hill shading and cost/distance analysis. Prerequisite: No previous knowledge of desktop mapping or GIS technology assumed. Some computer experience in operating within a Windows environment recommended. 1 hour lecture; 1 semester hour
-
3.00 Credits
Lectures, assigned readings, and discussions concerning the theory, measurement, and estimation of ground water parameters, fractured-rock flow, new or specialized methods of well hydraulics and pump tests, tracer methods, and well construction design. Design of well tests in variety of settings. Prerequisites: GEGN467 or consent of instructor. 3 hours lecture; 3 semester hours.
-
3.00 Credits
Lectures, assigned readings, and direct computer experience concerning the fundamentals and applications of analytical and finite-difference solutions to ground water flow problems as well as an introduction to inverse modeling. Design of computer models to solve ground water problems. Prerequisites: Familiarity with computers, mathematics through differential and integral calculus, and GEGN467. 3 hours lecture; 3 semester hours.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|