|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Special topics classes taught on a one-time basis. May include lecture, laboratory and field trip activities. Prerequisite: Approval of instructor and department head. Variable credit; 1 to 6 semester hours. Repeatable for credit under different titles.
-
3.00 Credits
Individual special studies, laboratory and/or field problems in geological engineering or engineering hydrogeology. Prerequisite: "Independent Study" form must be completed andsubmitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.
-
3.00 Credits
Introductory presentation of magmatic, hydrothermal, and sedimentary metallic ore deposits. Chemical, petrologic, structural, and sedimentological processes that contribute to ore formation. Description of classic deposits representing individual deposit types. Review of exploration sequences. Laboratory consists of hand specimen study of host rock-ore mineral suites and mineral deposit evaluation problems. Prerequisite: GEGN316 and DCGN209. 3 hours lecture, 3 hours lab; 4 semester hours.
-
3.00 Credits
Exploration project design: commodity selection, target selection, genetic models, alternative exploration approaches and associated costs, exploration models, property acquisition, and preliminary economic evaluation. Lectures and laboratory exercises to simulate the entire exploration sequence from inception and planning through implementation to discovery, with initial ore reserve calculations and preliminary economic evaluation. Prerequisite: GEGN401 and EPIC251. 2 hours lecture, 3 hours lab; 3 semester hours.
-
3.00 Credits
Identification of ore minerals using reflected light microscopy, micro-hardness, and reflectivity techniques. Petrographic analysis of ore textures and their significance. Guided research on the ore mineralogy and ore textures of classic ore deposits. Prerequisites: GEOL321, GEGN401, or consent of instructor. 6 hours lab; 3 semester hours.
-
3.00 Credits
Physical and chemical characteristics and geologic and geographic setting of magmatic, hydrothermal, and sedimentary metallic mineral deposits from the aspects of genesis, exploration, and mining. For non-majors. Prerequisite: GEOL308 or concurrent enrollment. 2 hours lecture; 2 semester hours. 86 Colorado School of Mines Undergraduate Bulletin 2008-2009
-
1.00 Credits
Techniques for managing and analyzing geological data, including statistical analysis procedures and computer programming. Topics addressed include elementary probability, populations and distributions, estimation, hypothesis testing, analysis of data sequences, mapping, sampling and sample representativity, linear regression, and overview of univariate and multivariate statistical methods. Practical experience with principles of software programming and statistical analysis for geological applications via suppled software and data sets from geological case histories. Prerequistes: Senior standing in Geological Engineering or permission of instructor. 1 hour lecture, 6 hours lab; 3 semester hours.
-
3.00 Credits
Source rocks, reservoir rocks, types of traps, temperature and pressure conditions of the reservoir, theories of origin and accumulation of petroleum, geology of major petroleum fields and provinces of the world, and methods of exploration for petroleum. Term report required. Laboratory consists of study of well log analysis, stratigraphic correlation, production mapping, hydrodynamics and exploration exercises. Prerequisite: GEOL308 or GEOL309 and GEOL314or GEOL315 and GEGN316 or GPGN486 or PEGN486. 3 hours lecture, 3 hours lab; 4 semester hours.
-
3.00 Credits
This is a multidisciplinary design course that integrates fundamentals and design concepts in geological, geophysical, and petroleum engineering. Students work in integrated teams consisting of students from each of the disciplines. Multiple open-end design problems in oil and gas exploration and field development, including the development of a prospect in an exploration play and a detailed engineering field study, are assigned. Several detailed written and oral presentations are made throughout the semester. Project economics including risk analysis are an integral part of the course. Prerequisites: GP majors: GPGN302 and GPGN303. GE Majors: GEOL308 or GEOL309, GEGN316, GEGN438. PE majors: PEGN316, PEGN414, PEGN422, PEGN423, PEGN424 (or concurrent). 2 hours lecture, 3 hours lab; 3 semester hours.
-
3.00 Credits
Application of quantitative geomorphic techniques to engineering problems. Map interpretation, photo interpretation, field observations, computer modeling, and GIS analysis methods. Topics include: coastal engineering, fluvial processes, river engineering, controlling water and wind erosion, permafrost engineering. Multi-week design projects and case studies. Prerequisite: GEGN342 and GEGN468, or graduate standing; GEGN475/575 recommended. 2 hours lecture, 3 hours lab; 3 semester hours.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|