|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Statics of particles and rigid bodies, kinematics and dynamics of particles (including damped and forced harmonic oscillators), work and energy, linear and angular momentum, conservation laws, dynamics of rigid bodies, introduction to special relativity.
-
3.00 Credits
Coulomb's law, electric fields and electrostatic potential, Gauss's law, Poisson's equation, capacitance, dielectric media, current density, simple circuits, magnetic fields, Lorentz force, magnetic media, induction, Ampere's law, inductance, Maxwell's equations.
-
3.00 Credits
Introduction to advanced topics in classical physics in preparation for the study of modern physics. Topics inlcude the Lagrangian Formalism of classical mechanics and its application to the theories of planetary motion, small oscillations, rigid body mechanics; Maxwell's equations, radiation and propagation of electromagnetic waves, the theory of special relativity.
-
3.00 Credits
An introduction to scientific measurement procedures, with special attention paid to the examination of error and uncertainty and to certain widely used experimental techniques and their application. Techniques used include those in optics, electronics and atomic, solid state and nuclear physics. Experiments are chosen according to the individual student's needs and interests. This course may be taken up to three times.
-
4.00 Credits
The fundamental principle of geometrical and physical optics and their application to the design of modern instruments as well as atomic spectra, properties of photos and lasers. Principles discussed in the lecture will be explored in various lab exercises. Lecture 2 hours, Lab 4 hours.
-
4.00 Credits
Laboratory and lecture covering both the basic structure of various electronic components, and their use and behavior in circuits. The course begins with linear elements, such as resistors, inductiors and capacitors and proceeds through various semiconductor devices, diodes, transistors and operational amplifiers and culminates with the structure and use of logic circuits. Major emphasis is placed on laboratory work where the properties and interactions of various circuits are investigated. Lecture 2 hours, lab 4 hours.
-
3.00 Credits
No course description available.
-
3.00 Credits
Thermodynamic systems; pressure and temperature; ideal gas laws; heat, work and energy; entropy; kinetic theory.
-
3.00 Credits
This course provides an introduction to Quantum Mechanics and is intended for physics majors/minors, and math or chemistry majors. The knowledge base covered is an essential foundation for students seeking to understand physical phenomenon at a microscopic level where particles are governed by the laws of quantum physics. The statistical formulation of quantum mechanics is introduced and the Schrodinger equation applied to problems in quantum mechanics including the hydrogen atom and many-particle systems.
-
2.00 Credits
A series of experiments chosen according to each student's needs and interests in the fields of optics, electronics and atomic, nuclear and solid state physics.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2024 AcademyOne, Inc.
|
|
|