|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
9.00 Credits
The aim is to cover the interactions existing between applied mathematics, namely applied and computational harmonic analysis, approximation theory, etc., and statistics and signal processing. The Fourier transform: the continuous Fourier transform, the discrete Fourier transform, FFT, time-frequency analysis, short-time Fourier transform. The wavelet transform: the continuous wavelet transform, discrete wavelet transforms, and orthogonal bases of wavelets. Statistical estimation. Denoising by linear filtering. Inverse problems. Approximation theory: linear/nonlinear approximation and applications to data compression. Wavelets and algorithms: fast wavelet transforms, wavelet packets, cosine packets, best orthogonal bases matching pursuit, basis pursuit. Data compression. Nonlinear estimation. Topics in stochastic processes. Topics in numerical analysis, e.g., multigrids and fast solvers. Not offered 2012–13.
Prerequisite:
ACM 11, 104, ACM 105 or undergraduate equivalent, or instructor’s permission.
-
9.00 Credits
First and second variations; Euler-Lagrange equation; Hamiltonian formalism; action principle; Hamilton-Jacobi theory; stability; local and global minima; direct methods and relaxation; isoperimetric inequality; asymptotic methods and gamma convergence; selected applications to mechanics, materials science, control theory and numerical methods. Instructor: Bhattacharya.
-
9.00 Credits
The mathematical theory of ordinary and partial differential equations, including a discussion of elliptic regularity, maximal principles, solubility of equations. The method of characteristics. Instructors: Kreuger, Chipeniuk.
-
9.00 Credits
Overview of measure theory. Random walks and the Strong law of large numbers via the theory of martingales and Markov chains. Characteristic functions and the central limit theorem. Poisson process and Brownian motion. Topics in statistics. Not offered 2012–13.
-
1.00 - 9.00 Credits
Graded pass/fail only.
-
12.00 Credits
Fully nonlinear first-order PDEs, shocks, eikonal equations. Classification of second-order linear equations: elliptic, parabolic, hyperbolic. Well-posed problems. Laplace and Poisson equations; Gauss’s theorem, Green’s function. Existence and uniqueness theorems (Sobolev spaces methods, Perron’s method). Applications to irrotational flow, elasticity, electrostatics, etc. Heat equation, existence and uniqueness theorems, Green’s function, special solutions. Wave equation and vibrations. Huygens’ principle. Spherical means. Retarded potentials. Water waves and various approximations, dispersion relations. Symmetric hyperbolic systems and waves. Maxwell equations, Helmholtz equation, Schrödinger equation. Radiation conditions. Gas dynamics. Riemann invariants. Shocks, Riemann problem. Local existence theory for general symmetric hyperbolic systems. Global existence and uniqueness for the inviscid Burgers’ equation. Integral equations, single- and double-layer potentials. Fredholm theory. Navier-Stokes equations. Stokes flow, Reynolds number. Potential flow; connection with complex variables. Blasius formulae. Boundary layers. Subsonic, supersonic, and transonic flow. Instructor: Bruno.
-
9.00 Credits
Basic differential geometry, oriented toward applications in control and dynamical systems. Topics include smooth manifolds and mappings, tangent and normal bundles. Vector fields and flows. Distributions and Frobenius’s theorem. Matrix Lie groups and Lie algebras. Exterior differential forms, Stokes’ theorem. Instructor: Murray.
Prerequisite:
CDS 201 or AM 125 a.
-
9.00 Credits
Finite difference and finite volume methods for hyperbolic problems. Stability and error analysis of nonoscillatory numerical schemes: i) linear convection: Lax equivalence theorem, consistency, stability, convergence, truncation error, CFL condition, Fourier stability analysis, von Neumann condition, maximum principle, amplitude and phase errors, group velocity, modified equation analysis, Fourier and eigenvalue stability of systems, spectra and pseudospectra of nonnormal matrices, Kreiss matrix theorem, boundary condition analysis, group velocity and GKS normal mode analysis; ii) conservation laws: weak solutions, entropy conditions, Riemann problems, shocks, contacts, rarefactions, discrete conservation, Lax-Wendroff theorem, Godunov’s method, Roe’s linearization, TVD schemes, high-resolution schemes, flux and slope limiters, systems and multiple dimensions, characteristic boundary conditions; iii) adjoint equations: sensitivity analysis, boundary conditions, optimal shape design, error analysis. Interface problems, level set methods for multiphase flows, boundary integral methods, fast summation algorithms, stability issues. Spectral methods: Fourier spectral methods on infinite and periodic domains. Chebyshev spectral methods on finite domains. Spectral element methods and h-p refinement. Multiscale finite element methods for elliptic problems with multiscale coefficients. Not offered 2012–13.
-
9.00 Credits
Stable laws, Markov chains, classification of states, ergodicity, von Neumann ergodic theorem, mixing rate, stationary/equilibrium distributions and convergence of Markov chains, Markov chain Monte Carlo and its applications to scientific computing, Metropolis Hastings algorithm, coupling from the past, martingale theory and discrete time martingales, rare events, law of large deviations, Chernoff bounds. Instructor: Owhadi.
-
9.00 Credits
The topic of this course changes from year to year and is expected to cover areas such as stochastic differential equations, stochastic control, statistical estimation and adaptive filtering, empirical processes and large deviation techniques, concentration inequalities and their applications. Examples of selected topics for stochastic differential equations include continuous time Brownian motion, Ito’s calculus, Girsanov theorem, stopping times, and applications of these ideas to mathematical finance and stochastic control. Instructors: Beck, Owhadi.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|