9.00 Credits
Linear spaces, subspaces, spans of sets, linear independence, bases, dimensions; linear transformations and operators, examples, nullspace/kernel, range-space/image, one-to-one and onto, isomorphism and invertibility, rank-nullity theorem; products of linear transformations, left and right inverses, generalized inverses. Adjoints of linear transformations, singular-value decomposition and Moore-Penrose inverse; matrix representation of linear transformations between finite-dimensional linear spaces, determinants, multilinear forms; metric spaces: examples, limits and convergence of sequences, completeness, continuity, fixed-point (contraction) theorem, open and closed sets, closure; normed and Banach spaces, inner product and Hilbert spaces: examples, Cauchy-Schwarz inequality, orthogonal sets, Gram-Schmidt orthogonalization, projections onto subspaces, best approximations in subspaces by projection; bounded linear transformations, principle of superposition for infinite series, well-posed linear problems, norms of operators and matrices, convergence of sequences and series of operators; eigenvalues and eigenvectors of linear operators, including their properties for self- adjoint operators, spectral theorem for self-adjoint and normal operators; canonical representations of linear operators (finite-dimensional case), including diagonal and Jordan form, direct sums of (generalized) eigenspaces. Schur form; functions of linear operators, including exponential, using diagonal and Jordan forms, Cayley-Hamilton theorem. Taught concurrently with CDS 201. Instructor: Beck.