|
|
|
|
|
|
|
Course Criteria
Add courses to your favorites to save, share, and find your best transfer school.
-
3.00 Credits
Integrated circuits and micro-devices related to multistage amplifiers, oscillators, design specifications, operational amplifiers, and microcircuits. Computer simulation. Prerequisites: EE 313, 315.
-
3.00 Credits
Random variables and probability description of signals. Introduction to random processes: autocorrelations, cross correlation, power spectral density. Noise analysis: thermal, shot, white, and colored. Response of electrical systems to random inputs. Prerequisite: EE 382 or CPE 381.
-
3.00 Credits
Advanced concepts in Boolean algebra, use of hardware description languages as a practical means to implement hybrid sequential and combinational designs, digital logic simulation, rapid prototyping techniques, and design for testability concepts. Focuses upon the actual design and implementation of sizeable digital design problems using a representative set of Computer Aided Design (CAD) tools. Prerequisite: EE 202, EE315. (Same as CPE 422) Corequisite: EE 422L.
-
0.00 - 3.00 Credits
Corequisite: EE 422.
-
3.00 Credits
Modern test equipment and computer-based simulation methods are used to conduct experiments in the area of communication systems. Hands-on experiments are conducted using digital oscilloscopes, arbitrary waveform generators, vector impedance meters and other relevant test and measurement equipment. Methods are investigated for signal modulation and demodulation; studies are conducted on AM, FM, PSK, PCM and delta modulation circuits and systems. Several types of filters are investigated, both analytically and experimentally. Properties and behavior of phase-locked loop are studied by using both hardware and numerical simulations. 150 Prerequisite/Corequisite: EE 426.
-
3.00 Credits
Overview of historic development of modern telephone and data communication system, system architecture, standards, broadband switching systems, modems, protocols, personal and mobile communications, digital modulation techniques. Prerequisite: EE 383 or CPE 381.
-
3.00 Credits
Basic theories and analytical techniques for modeling, analysis and control of dynamical systems. Transfer functions, block-diagrams, frequency response, stability criteria, series and feedback controller design, and digital control. Introduction to the dynamic analysis and control of robotic systems. Prerequisite: EE 382 or CPE 381.
-
3.00 Credits
Review of elementary signals and systems including the Hilbert transform, cross and auto correlation, power density spectrum, and the Wiener-Khintchine theorem. Butterworth and Chebyshev low-pass filters. Band-pass signals and systems. The low-pass equivalent of a band-pass signal/system. Commonly used forms of linear and nonlinear modulation. Demodulation methods and circuits. Phase lock and frequency feedback techniques. Prerequisites: EE 382 or CPE 381.
-
3.00 Credits
Introduction to VLSI design using CAD tools, CMOS logic, switch level modeling, circuit characterization, logic design in CMOS, systems design methods, test subsystem design, design examples, student design project. Design project to be fabricated and tested in EE/CPE 428. Prerequisite: EE 202 and EE 315. (Same as CPE 427) Corequisite: EE 427L.
-
0.00 - 3.00 Credits
Corequisite: EE 427.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Privacy Statement
|
Terms of Use
|
Institutional Membership Information
|
About AcademyOne
Copyright 2006 - 2025 AcademyOne, Inc.
|
|
|