Course Criteria

Add courses to your favorites to save, share, and find your best transfer school.
  • 4.00 Credits

    Offers a deeper and more generalized look at the ideas and objects of study of calculus. Topics include the generalized calculus of n-space, the inverse and implicit function theorems, differential forms and general Stokes-type theorems, geometry of curves and surfaces, and special functions.
  • 4.00 Credits

    Provides a first course in Fourier series, Sturm-Liouville boundary value problems, and their application to solving the fundamental partial differential equations of mathematical physics: the heat equation, the wave equation, and Laplace's equation. Green's functions are also introduced as a means of obtaining closed-form solutions.
  • 4.00 Credits

    Provides the theoretical underpinnings of calculus and the advanced study of functions. Emphasis is on precise definitions and rigorous proof. Topics include the real numbers and completeness, continuity and differentiability, the Riemann integral, the fundamental theorem of calculus, inverse function and implicit function theorems, and limits and convergence. Required of all mathematics majors.
  • 4.00 Credits

    Provides an introduction to the analysis of functions of a complex variable. Starting with the algebra and geometry of complex numbers, basic derivative and contour integral properties are developed for elementary algebraic and transcendental functions as well as for other analytic functions and functions with isolated singularities. Power and Laurent series representations are given. Classical integral theorems, residue theory, and conformal mapping properties are studied. Applications of harmonic functions are presented as time permits.
  • 4.00 Credits

    Studies classical geometry and symmetry groups of geometric figures, with an emphasis on Euclidean geometry. Teaches how to formulate mathematical propositions precisely and how to construct and understand mathematical proofs. Provides a line between classical and modern geometry with the aim of preparing students for further study in group theory and differential geometry.
  • 4.00 Credits

    Introduces the student to fundamental notions of topology. Introduces basic set theory, then covers the foundations of general topology (axioms for a topological space, continuous functions, homeomorphisms, metric spaces, the subspace, product and quotient topologies, connectedness, compactness, and the Hausdorff condition). Also introduces algebraic and geometric topology (homotopy, covering spaces, fundamental groups, graphs, surfaces, and manifolds) and applications. Other topics are covered if time permits.
  • 4.00 Credits

    Provides a more detailed study of linear transformations and matrices: LU factorization, QR factorization, Spectral theorem and singular value decomposition, Jordan form, positive definite matrices, quadratic forms, partitioned matrices, and norms and numerical issues. Topics and emphasis change from year to year.
  • 4.00 Credits

    Presents basic concepts and techniques of the group theory: symmetry groups, axiomatic definition of groups, important classes of groups (abelian groups, cyclic groups, additive and multiplicative groups of residues, and permutation groups), Cayley table, subgroups, group homomorphism, cosets, the Lagrange theorem, normal subgroups, quotient groups, and direct products. Studies structural properties of groups. Possible applications include geometry, number theory, crystallography, physics, and combinatorics.
  • 4.00 Credits

    Introduces commutative rings, ideals, integral domains, fields, and the theory of extension fields. Topics include Gaussian integers, Galois groups, and the fundamental theorem of Galois theory. Applications include the impossibility of angle-trisection and the general insolvability of fifth- and higher-degree polynomials. Other topics are covered as time permits.
  • 4.00 Credits

    Continues topics introduced in MTH U481. The first part of the course covers classical procedures of statistics including the t-test, linear regression, and the chi-square test. The second part provides an introduction to stochastic processes with emphasis on Markov chains, random walks, and Brownian motion, with applications to modeling and finance.
To find college, community college and university courses by keyword, enter some or all of the following, then select the Search button.
(Type the name of a College, University, Exam, or Corporation)
(For example: Accounting, Psychology)
(For example: ACCT 101, where Course Prefix is ACCT, and Course Number is 101)
(For example: Introduction To Accounting)
(For example: Sine waves, Hemingway, or Impressionism)
Distance:
of
(For example: Find all institutions within 5 miles of the selected Zip Code)
Privacy Statement   |   Terms of Use   |   Institutional Membership Information   |   About AcademyOne   
Copyright 2006 - 2024 AcademyOne, Inc.